Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 27–37
DOI: https://doi.org/10.4213/faa3107
(Mi faa3107)
 

This article is cited in 4 scientific papers (total in 4 papers)

Absence of Eigenvalues for the Periodic Schrödinger Operator with Singular Potential in a Rectangular Cylinder

I. Kachkovskii

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (194 kB) Citations (4)
References:
Abstract: We consider the periodic Schrödinger operator on a $d$-dimensional cylinder with rectangular section. The electric potential may contain a singular component of the form $\sigma(x,y)\delta_{\Sigma}(x,y)$, where $\Sigma$ is a periodic system of hypersurfaces. We establish that there are no eigenvalues in the spectrum of this operator, provided that $\Sigma$ is sufficiently smooth and $\sigma\in L_{p,\operatorname{loc}}(\Sigma)$, $p>d-1$.
Keywords: Schrödinger operator, periodic coefficients, absolutely continuous spectrum.
Received: 05.12.2012
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 104–112
DOI: https://doi.org/10.1007/s10688-013-0015-y
Bibliographic databases:
Document Type: Article
UDC: 517.984.56
Language: Russian
Citation: I. Kachkovskii, “Absence of Eigenvalues for the Periodic Schrödinger Operator with Singular Potential in a Rectangular Cylinder”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 27–37; Funct. Anal. Appl., 47:2 (2013), 104–112
Citation in format AMSBIB
\Bibitem{Kac13}
\by I.~Kachkovskii
\paper Absence of Eigenvalues for the Periodic Schr\"odinger Operator with Singular Potential in a Rectangular Cylinder
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 27--37
\mathnet{http://mi.mathnet.ru/faa3107}
\crossref{https://doi.org/10.4213/faa3107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113867}
\zmath{https://zbmath.org/?q=an:1273.35200}
\elib{https://elibrary.ru/item.asp?id=20730688}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 104--112
\crossref{https://doi.org/10.1007/s10688-013-0015-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400003}
\elib{https://elibrary.ru/item.asp?id=20439431}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879831423}
Linking options:
  • https://www.mathnet.ru/eng/faa3107
  • https://doi.org/10.4213/faa3107
  • https://www.mathnet.ru/eng/faa/v47/i2/p27
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:658
    Full-text PDF :181
    References:81
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024