Abstract:
The paper deals with interpolation orbits for linear operators acting from an arbitrary couple {Lp0(U0),Lp1(U1)} of weighted Lp spaces into an arbitrary couple {Lq0(V0),Lq1(V1)} of such spaces, where 1⩽p0,p1,q0,q1⩽∞. Here Lp(U) is the space of measurable functions f on a measure space such that fU∈Lp, equipped with the norm
‖. The paper describes the orbits of arbitrary elements a\in L_{p_0}(U_0)+L_{p_1}(U_1). It contains proofs of the results announced in C. R. Acad. Sci. Paris, Ser. I, 334, 881–884 (2002).
Keywords:
space of measurable functions, interpolation space, interpolation orbit.
Citation:
V. I. Ovchinnikov, “Interpolation Orbits in Couples of Lebesgue Spaces”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 56–68; Funct. Anal. Appl., 39:1 (2005), 46–56
This publication is cited in the following 9 articles:
V. I. Dmitriev, E. V. Zhuravleva, O. Yu. Mikhailova, I. N. Burilich, “On the $ K $-functionals of Absolutely Calderón Elements of the Banach Pair $ (l_{1},c_{0}) $”, Sib Math J, 65:2 (2024), 279
V. I. Dmitriev, E. V. Zhuravleva, O. Yu. Mikhailova, I. N. Burilich, “O $ K $-funktsionalakh absolyutno kalderonovykh elementov banakhovoi pary $(l_{1} , c_{0})$”, Sib. matem. zhurn., 65:2 (2024), 277–287
Sergey V. Astashkin, Michael Cwikel, Per G. Nilsson, “Arazy–Cwikel and Calderón–Mityagin type properties of the couples $(\ell ^{p},\ell ^{q})$, $0\le p<q\le \infty $”, Annali di Matematica, 202:4 (2023), 1643
V. I. Dmitriev, “On one transformation of parameter-spaces of real interpolation method”, Russian Math. (Iz. VUZ), 60:12 (2016), 36–42
Kussainova L. Ospanova A., “Interpolation Theorems For Weighted Sobolev Spaces”, World Congress on Engineering, Wce 2015, Vol i, Lecture Notes in Engineering and Computer Science, ed. Ao S. Gelman L. Hukins D. Hunter A. Korsunsky A., Int Assoc Engineers-Iaeng, 2015, 25–28
V. I. Ovchinnikov, “Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces”, Sb. Math., 205:1 (2014), 83–100
V. I. Ovchinnikov, “Interpolation functions and the Lions–Peetre interpolation construction”, Russian Math. Surveys, 69:4 (2014), 681–741
Grishina A.M., Ovchinnikov V.I., “Interpolyatsionnaya teorema dlya prostranstv orlicha-lorentsa”, Vestnik voronezhskogo gosudarstvennogo universiteta. seriya: fizika. matematika, 2013, no. 2, 162–172
Interpolation theorem for the orlicz-lorentz spaces
V. I. Ovchinnikov, “The quasinormed Neumann–Schatten ideals and embedding theorems for the generalized Lions–Peetre spaces of means”, St. Petersburg Math. J., 22:4 (2011), 669–681