Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 1, Pages 56–68
DOI: https://doi.org/10.4213/faa31
(Mi faa31)
 

This article is cited in 9 scientific papers (total in 9 papers)

Interpolation Orbits in Couples of Lebesgue Spaces

V. I. Ovchinnikov

Voronezh State University
Full-text PDF (215 kB) Citations (9)
References:
Abstract: The paper deals with interpolation orbits for linear operators acting from an arbitrary couple {Lp0(U0),Lp1(U1)} of weighted Lp spaces into an arbitrary couple {Lq0(V0),Lq1(V1)} of such spaces, where 1p0,p1,q0,q1. Here Lp(U) is the space of measurable functions f on a measure space such that fULp, equipped with the norm . The paper describes the orbits of arbitrary elements a\in L_{p_0}(U_0)+L_{p_1}(U_1). It contains proofs of the results announced in C. R. Acad. Sci. Paris, Ser. I, 334, 881–884 (2002).
Keywords: space of measurable functions, interpolation space, interpolation orbit.
Received: 11.03.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 1, Pages 46–56
DOI: https://doi.org/10.1007/s10688-005-0016-6
Bibliographic databases:
Document Type: Article
UDC: 517.982
Language: Russian
Citation: V. I. Ovchinnikov, “Interpolation Orbits in Couples of Lebesgue Spaces”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 56–68; Funct. Anal. Appl., 39:1 (2005), 46–56
Citation in format AMSBIB
\Bibitem{Ovc05}
\by V.~I.~Ovchinnikov
\paper Interpolation Orbits in Couples of Lebesgue Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 56--68
\mathnet{http://mi.mathnet.ru/faa31}
\crossref{https://doi.org/10.4213/faa31}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132439}
\zmath{https://zbmath.org/?q=an:1104.46045}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 46--56
\crossref{https://doi.org/10.1007/s10688-005-0016-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144362107}
Linking options:
  • https://www.mathnet.ru/eng/faa31
  • https://doi.org/10.4213/faa31
  • https://www.mathnet.ru/eng/faa/v39/i1/p56
  • This publication is cited in the following 9 articles:
    1. V. I. Dmitriev, E. V. Zhuravleva, O. Yu. Mikhailova, I. N. Burilich, “On the $ K $-functionals of Absolutely Calderón Elements of the Banach Pair $ (l_{1},c_{0}) $”, Sib Math J, 65:2 (2024), 279  crossref
    2. V. I. Dmitriev, E. V. Zhuravleva, O. Yu. Mikhailova, I. N. Burilich, “O $ K $-funktsionalakh absolyutno kalderonovykh elementov banakhovoi pary $(l_{1} , c_{0})$”, Sib. matem. zhurn., 65:2 (2024), 277–287  mathnet  crossref
    3. Sergey V. Astashkin, Michael Cwikel, Per G. Nilsson, “Arazy–Cwikel and Calderón–Mityagin type properties of the couples $(\ell ^{p},\ell ^{q})$, $0\le p<q\le \infty $”, Annali di Matematica, 202:4 (2023), 1643  crossref
    4. V. I. Dmitriev, “On one transformation of parameter-spaces of real interpolation method”, Russian Math. (Iz. VUZ), 60:12 (2016), 36–42  mathnet  crossref  isi
    5. Kussainova L. Ospanova A., “Interpolation Theorems For Weighted Sobolev Spaces”, World Congress on Engineering, Wce 2015, Vol i, Lecture Notes in Engineering and Computer Science, ed. Ao S. Gelman L. Hukins D. Hunter A. Korsunsky A., Int Assoc Engineers-Iaeng, 2015, 25–28  isi
    6. V. I. Ovchinnikov, “Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces”, Sb. Math., 205:1 (2014), 83–100  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. V. I. Ovchinnikov, “Interpolation functions and the Lions–Peetre interpolation construction”, Russian Math. Surveys, 69:4 (2014), 681–741  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Grishina A.M., Ovchinnikov V.I., “Interpolyatsionnaya teorema dlya prostranstv orlicha-lorentsa”, Vestnik voronezhskogo gosudarstvennogo universiteta. seriya: fizika. matematika, 2013, no. 2, 162–172 Interpolation theorem for the orlicz-lorentz spaces  elib
    9. V. I. Ovchinnikov, “The quasinormed Neumann–Schatten ideals and embedding theorems for the generalized Lions–Peetre spaces of means”, St. Petersburg Math. J., 22:4 (2011), 669–681  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :219
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025