Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 1, Pages 39–55
DOI: https://doi.org/10.4213/faa30
(Mi faa30)
 

This article is cited in 8 scientific papers (total in 8 papers)

Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)

E. L. Lakshtanova, R. A. Minlosb

a M. V. Lomonosov Moscow State University
b Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (297 kB) Citations (8)
References:
Abstract: This paper is a continuation of the authors' paper published in no. 3 of this journal in the previous year, where a detailed statement of the problem on the two-particle bound state spectrum of transfer matrices was given for a wide class of Gibbs fields on the lattice $\mathbb Z^{\nu+1}$ in the high-temperature region $(T \gg 1)$. In the present paper, it is shown that for $\nu=1$ the so-called “adjacent” bound state levels (i.e., those lying at distances of the order of $T^{-\alpha}$, $\alpha>2$, from the continuous spectrum) can appear only for values of the total quasimomentum $\Lambda$ of the system that satisfy the condition $|\Lambda-\Lambda_j^{\text{\textup{mult}}}|< c/T^2$ (here $c$ is a constant), where $\Lambda_j^{\text{\textup{mult}}}$ are the quasimomentum values for which the symbol $\{\omega_\Lambda(k),\,k \in \mathbb T^1\}$ has two coincident extrema. Conditions under which such levels actually appear are also presented.
Keywords: transfer matrices, bound state, Fredholm operator, total quasimomentum, adjacent level.
Received: 19.03.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 1, Pages 31–45
DOI: https://doi.org/10.1007/s10688-005-0015-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: E. L. Lakshtanov, R. A. Minlos, “Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 39–55; Funct. Anal. Appl., 39:1 (2005), 31–45
Citation in format AMSBIB
\Bibitem{LakMin05}
\by E.~L.~Lakshtanov, R.~A.~Minlos
\paper Two-Particle Bound State Spectrum of Transfer Matrices for Gibbs Fields (Fields on the Two-Dimensional Lattice. Adjacent Levels)
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 39--55
\mathnet{http://mi.mathnet.ru/faa30}
\crossref{https://doi.org/10.4213/faa30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132438}
\zmath{https://zbmath.org/?q=an:1127.82036}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 31--45
\crossref{https://doi.org/10.1007/s10688-005-0015-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144418576}
Linking options:
  • https://www.mathnet.ru/eng/faa30
  • https://doi.org/10.4213/faa30
  • https://www.mathnet.ru/eng/faa/v39/i1/p39
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1109
    Full-text PDF :218
    References:100
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024