Abstract:
We introduce and study a multishift structure in a Hilbert space. This structure is a noncommutative analog of the (simple one-sided) shift operator, well known in function theory and functional analysis. Subspaces invariant
under the multishift are described. A theorem on the factorization into an inner and an outer factor is established for operators commuting with the multishift.
This publication is cited in the following 14 articles:
Astashkin V S., Terekhin P.A.Y., “Sequences of Dilations and Translations Equivalent to the Haar System in l-P-Spaces”, J. Approx. Theory, 274 (2022), 105672
Astashkin S.V., Terekhin P.A., “Sequences of Dilations and Translations in Function Spaces”, J. Math. Anal. Appl., 457:1 (2018), 645–671
S. V. Astashkin, P. A. Terekhin, “Basis properties of affine Walsh systems in symmetric spaces”, Izv. Math., 82:3 (2018), 451–476
S. V. Astashkin, P. A. Terekhin, “Affine Walsh-type systems of functions in symmetric spaces”, Sb. Math., 209:4 (2018), 469–490
Astashkin S.V., Terekhin P.A., “On the Boundedness of Operator Generated By the Haar Multishift”, Dokl. Math., 96:2 (2017), 442–444
S.V. Astashkin, P. A. Terekhin, “OB OGRANIChENNOSTI OPERATORA, POROZhDENNOGO MULTISDVIGOM KhAARA, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 2, 133
P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318
Kh. Kh. Kh. Al-Dzhourani, V. A. Mironov, P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Polnota i minimalnost”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 247–256
P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400
Sarsenbi A.M., Terekhin P.A., “Riesz Basicity For General Systems of Functions”, J. Funct. space, 2014, 860279
P. A. Terekhin, “Best approximation of functions in Lp by polynomials on affine system”, Sb. Math., 202:2 (2011), 279–306
P. A. Terekhin, “Linear algorithms of affine synthesis in the Lebesgue space L1[0,1]”, Izv. Math., 74:5 (2010), 993–1022
P. A. Terekhin, “Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
Lp[0,1]”, Math. Notes, 83:5 (2008), 657–674