Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 1, Pages 69–81
DOI: https://doi.org/10.4213/faa32
(Mi faa32)
 

This article is cited in 14 scientific papers (total in 14 papers)

Multishifts in Hilbert Spaces

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We introduce and study a multishift structure in a Hilbert space. This structure is a noncommutative analog of the (simple one-sided) shift operator, well known in function theory and functional analysis. Subspaces invariant under the multishift are described. A theorem on the factorization into an inner and an outer factor is established for operators commuting with the multishift.
Keywords: Hilbert space, shift operator, multishift, invariant subspace, wandering subspace, factorization theorem.
Received: 19.03.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 1, Pages 57–67
DOI: https://doi.org/10.1007/s10688-005-0017-5
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: P. A. Terekhin, “Multishifts in Hilbert Spaces”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 69–81; Funct. Anal. Appl., 39:1 (2005), 57–67
Citation in format AMSBIB
\Bibitem{Ter05}
\by P.~A.~Terekhin
\paper Multishifts in Hilbert Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 69--81
\mathnet{http://mi.mathnet.ru/faa32}
\crossref{https://doi.org/10.4213/faa32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132440}
\zmath{https://zbmath.org/?q=an:1096.47034}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 57--67
\crossref{https://doi.org/10.1007/s10688-005-0017-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144409830}
Linking options:
  • https://www.mathnet.ru/eng/faa32
  • https://doi.org/10.4213/faa32
  • https://www.mathnet.ru/eng/faa/v39/i1/p69
  • This publication is cited in the following 14 articles:
    1. Astashkin V S., Terekhin P.A.Y., “Sequences of Dilations and Translations Equivalent to the Haar System in l-P-Spaces”, J. Approx. Theory, 274 (2022), 105672  crossref  mathscinet  isi
    2. Astashkin S.V., Terekhin P.A., “Sequences of Dilations and Translations in Function Spaces”, J. Math. Anal. Appl., 457:1 (2018), 645–671  crossref  mathscinet  zmath  isi  scopus
    3. S. V. Astashkin, P. A. Terekhin, “Basis properties of affine Walsh systems in symmetric spaces”, Izv. Math., 82:3 (2018), 451–476  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. S. V. Astashkin, P. A. Terekhin, “Affine Walsh-type systems of functions in symmetric spaces”, Sb. Math., 209:4 (2018), 469–490  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Mironov V.A., Sarsenbi A.M., Terekhin P.A., “Affine Bessel Sequences and Nikishin'S Example”, Filomat, 31:4 (2017), 963–966  crossref  mathscinet  isi  scopus
    6. Astashkin S.V., Terekhin P.A., “On the Boundedness of Operator Generated By the Haar Multishift”, Dokl. Math., 96:2 (2017), 442–444  crossref  mathscinet  zmath  isi  scopus
    7. S.V. Astashkin, P. A. Terekhin, “OB OGRANIChENNOSTI OPERATORA, POROZhDENNOGO MULTISDVIGOM KhAARA, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 2, 133  crossref
    8. P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Kh. Kh. Kh. Al-Dzhourani, V. A. Mironov, P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Polnota i minimalnost”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 247–256  mathnet  crossref  mathscinet  elib
    10. P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400  mathnet  crossref  elib
    11. Sarsenbi A.M., Terekhin P.A., “Riesz Basicity For General Systems of Functions”, J. Funct. space, 2014, 860279  crossref  mathscinet  zmath  isi  scopus
    12. P. A. Terekhin, “Best approximation of functions in Lp by polynomials on affine system”, Sb. Math., 202:2 (2011), 279–306  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. P. A. Terekhin, “Linear algorithms of affine synthesis in the Lebesgue space L1[0,1]”, Izv. Math., 74:5 (2010), 993–1022  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. P. A. Terekhin, “Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces Lp[0,1]”, Math. Notes, 83:5 (2008), 657–674  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :266
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025