Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 1, Pages 16–30
DOI: https://doi.org/10.4213/faa3023
(Mi faa3023)
 

This article is cited in 9 scientific papers (total in 10 papers)

Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup

A. M. Vershik, P. P. Nikitin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: A complete list of indecomposable characters of the infinite symmetric semigroup is given. In comparison with a similar list for the infinite symmetric group, only one new parameter appears, which has a clear combinatorial meaning. The results rely on the representation theory of finite symmetric semigroups and the representation theory of the infinite symmetric group.
Keywords: symmetric semigroup, character, factor representation, infinite symmetric group.
Received: 11.10.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 1, Pages 13–24
DOI: https://doi.org/10.1007/s10688-011-0002-0
Bibliographic databases:
Document Type: Article
UDC: 519.17+519.21
Language: Russian
Citation: A. M. Vershik, P. P. Nikitin, “Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 16–30; Funct. Anal. Appl., 45:1 (2011), 13–24
Citation in format AMSBIB
\Bibitem{VerNik11}
\by A.~M.~Vershik, P.~P.~Nikitin
\paper Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 16--30
\mathnet{http://mi.mathnet.ru/faa3023}
\crossref{https://doi.org/10.4213/faa3023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848737}
\zmath{https://zbmath.org/?q=an:1271.20072}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 13--24
\crossref{https://doi.org/10.1007/s10688-011-0002-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952810815}
Linking options:
  • https://www.mathnet.ru/eng/faa3023
  • https://doi.org/10.4213/faa3023
  • https://www.mathnet.ru/eng/faa/v45/i1/p16
  • This publication is cited in the following 10 articles:
    1. P. Nikitin, N. Safonkin, “Semifinite harmonic functions on the direct product of graded graphs”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIV, Zap. nauchn. sem. POMI, 517, POMI, SPb., 2022, 125–150  mathnet
    2. Jonas Wahl, “Traces on diagram algebras II: centralizer algebras of easy groups and new variations of the Young graph”, Algebraic Combinatorics, 5:3 (2022), 413  crossref
    3. N. A. Safonkin, “Semifinite Harmonic Functions on Branching Graphs”, J Math Sci, 261:5 (2022), 669  crossref
    4. N. A. Safonkin, “Semifinite harmonic functions on branching graphs”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXIII, Zap. nauchn. sem. POMI, 507, POMI, SPb., 2021, 114–139  mathnet
    5. N. I. Nessonov, “Characters of the Infinite Symmetric Inverse Semigroup”, Funct. Anal. Appl., 54:3 (2020), 179–187  mathnet  crossref  crossref  mathscinet  isi
    6. Vershik A.M., “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218  crossref  mathscinet  zmath  isi  scopus
    7. Vershik A., “Smoothness and Standardness in the Theory of AF-Algebras and in the Problem on Invariant Measures”, Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, 91, eds. Sidoravicius V., Smirnov S., Amer Mathematical Soc, 2016, 423–436  crossref  mathscinet  zmath  isi
    8. V. M. Buchstaber, M. I. Gordin, I. A. Ibragimov, V. A. Kaimanovich, A. A. Kirillov, A. A. Lodkin, S. P. Novikov, A. Yu. Okounkov, G. I. Olshanski, F. V. Petrov, Ya. G. Sinai, L. D. Faddeev, S. V. Fomin, N. V. Tsilevich, Yu. V. Yakubovich, “Anatolii Moiseevich Vershik (on his 80th birthday)”, Russian Math. Surveys, 69:1 (2014), 165–179  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Petrov L., “Sl(2) Operators and Markov Processes on Branching Graphs”, J. Algebr. Comb., 38:3 (2013), 663–720  crossref  mathscinet  zmath  isi  scopus
    10. L. V. Bogachev, S. M. Zarbaliev, “Limit theorems for a certain class of random convex polygonal lines”, Russian Math. Surveys, 54:4 (1999), 830–832  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:658
    Full-text PDF :248
    References:72
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025