Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 1, Pages 1–15
DOI: https://doi.org/10.4213/faa3031
(Mi faa3031)
 

This article is cited in 11 scientific papers (total in 11 papers)

Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface

M. S. Agranovich

Moscow Institute of Electronics and Mathematics
References:
Abstract: We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces Hs, the simplest L2-spaces of the Sobolev type, with the use of potential type operators on S. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on S, including the asymptotics of the eigenvalues.
Keywords: strong ellipticity, Lipschitz domain, nonclosed boundary, potential type operators, Bessel potential spaces, Besov spaces, regularity of solutions, spectral transmission problems, spectral asymptotics.
Received: 28.04.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 1, Pages 1–12
DOI: https://doi.org/10.1007/s10688-011-0001-1
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.95
Language: Russian
Citation: M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 1–15; Funct. Anal. Appl., 45:1 (2011), 1–12
Citation in format AMSBIB
\Bibitem{Agr11}
\by M.~S.~Agranovich
\paper Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa3031}
\crossref{https://doi.org/10.4213/faa3031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848736}
\zmath{https://zbmath.org/?q=an:1271.35023}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1007/s10688-011-0001-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952811962}
Linking options:
  • https://www.mathnet.ru/eng/faa3031
  • https://doi.org/10.4213/faa3031
  • https://www.mathnet.ru/eng/faa/v45/i1/p1
  • This publication is cited in the following 11 articles:
    1. Peicheva A.S., “Embedding Theorems For Functional Spaces Associated With a Class of Hermitian Forms”, J. Sib. Fed. Univ.-Math. Phys., 10:1 (2017), 83–95  mathnet  crossref  isi  scopus
    2. Sybil Yu.M., Grytsko B.E., “Boundary Value Problem For the Two-Dimensional Laplace Equation With Transmission Condition on Thin Inclusion”, J. Numer. Appl. Math., 2:122 (2016), 120–129  isi
    3. N. Tarkhanov, A. A. Shlapunov, “Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. II”, Siberian Adv. Math., 26:4 (2016), 247–293  mathnet  crossref  crossref  mathscinet  elib
    4. Shlapunov A., Peicheva A., “on the Completeness of Root Functions of Sturm-Liouville Problems For the Lame System in Weighted Spaces”, ZAMM-Z. Angew. Math. Mech., 95:11 (2015), 1202–1214  crossref  mathscinet  zmath  isi  elib  scopus
    5. P. Exner, K. Pankrashkin, “Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc”, Comm. Partial Differential Equations, 39:2 (2014), 193–212  crossref  mathscinet  zmath  isi  scopus
    6. M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funct. Anal. Appl., 47:2 (2013), 83–95  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Shlapunov A. Tarkhanov N., “On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators”, J. Differential Equations, 255:10 (2013), 3305–3337  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. M. S. Agranovich, “Remarks on strongly elliptic systems in Lipschitz domains”, Russ. J. Math. Phys., 19:4 (2012), 405  crossref
    9. M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33  mathnet  crossref  mathscinet
    10. M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:757
    Full-text PDF :264
    References:91
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025