Abstract:
We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces Hs, the simplest L2-spaces of the Sobolev type, with the use of potential type operators on S. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on S, including the asymptotics of the eigenvalues.
Citation:
M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 1–15; Funct. Anal. Appl., 45:1 (2011), 1–12
\Bibitem{Agr11}
\by M.~S.~Agranovich
\paper Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa3031}
\crossref{https://doi.org/10.4213/faa3031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848736}
\zmath{https://zbmath.org/?q=an:1271.35023}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1007/s10688-011-0001-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952811962}
Linking options:
https://www.mathnet.ru/eng/faa3031
https://doi.org/10.4213/faa3031
https://www.mathnet.ru/eng/faa/v45/i1/p1
This publication is cited in the following 11 articles:
Peicheva A.S., “Embedding Theorems For Functional Spaces Associated With a Class of Hermitian Forms”, J. Sib. Fed. Univ.-Math. Phys., 10:1 (2017), 83–95
Sybil Yu.M., Grytsko B.E., “Boundary Value Problem For the Two-Dimensional Laplace Equation With Transmission Condition on Thin Inclusion”, J. Numer. Appl. Math., 2:122 (2016), 120–129
N. Tarkhanov, A. A. Shlapunov, “Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. II”, Siberian Adv. Math., 26:4 (2016), 247–293
Shlapunov A., Peicheva A., “on the Completeness of Root Functions of Sturm-Liouville Problems For the Lame System in Weighted Spaces”, ZAMM-Z. Angew. Math. Mech., 95:11 (2015), 1202–1214
P. Exner, K. Pankrashkin, “Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc”, Comm. Partial Differential Equations, 39:2 (2014), 193–212
M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funct. Anal. Appl., 47:2 (2013), 83–95
Shlapunov A. Tarkhanov N., “On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators”, J. Differential Equations, 255:10 (2013), 3305–3337
M. S. Agranovich, “Remarks on strongly elliptic systems in Lipschitz domains”, Russ. J. Math. Phys., 19:4 (2012), 405
M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33
M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98
M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12