Abstract:
Using an integrable discrete Dirac operator, we construct a discrete version of the Weierstrass representation for hyperbolic surfaces parameterized along isotropic directions in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$. The corresponding discrete surfaces have isotropic edges. We show that any discrete surface satisfying a general monotonicity condition and having isotropic edges admits such a representation.
Citation:
D. V. Zakharov, “Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 31–40; Funct. Anal. Appl., 45:1 (2011), 25–32