|
This article is cited in 1 scientific paper (total in 1 paper)
Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$
D. V. Zakharov Columbia University
Abstract:
Using an integrable discrete Dirac operator, we construct a discrete version of the Weierstrass representation for hyperbolic surfaces parameterized along isotropic directions in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$. The corresponding discrete surfaces have isotropic edges. We show that any discrete surface satisfying a general monotonicity condition and having isotropic edges admits such a representation.
Keywords:
integrable system, discretization, discrete differential geometry.
Received: 14.09.2009
Citation:
D. V. Zakharov, “Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 31–40; Funct. Anal. Appl., 45:1 (2011), 25–32
Linking options:
https://www.mathnet.ru/eng/faa3029https://doi.org/10.4213/faa3029 https://www.mathnet.ru/eng/faa/v45/i1/p31
|
Statistics & downloads: |
Abstract page: | 392 | Full-text PDF : | 169 | References: | 45 | First page: | 3 |
|