Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 1, Pages 31–40
DOI: https://doi.org/10.4213/faa3029
(Mi faa3029)
 

This article is cited in 1 scientific paper (total in 1 paper)

Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$

D. V. Zakharov

Columbia University
Full-text PDF (184 kB) Citations (1)
References:
Abstract: Using an integrable discrete Dirac operator, we construct a discrete version of the Weierstrass representation for hyperbolic surfaces parameterized along isotropic directions in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$. The corresponding discrete surfaces have isotropic edges. We show that any discrete surface satisfying a general monotonicity condition and having isotropic edges admits such a representation.
Keywords: integrable system, discretization, discrete differential geometry.
Received: 14.09.2009
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 1, Pages 25–32
DOI: https://doi.org/10.1007/s10688-011-0003-z
Bibliographic databases:
Document Type: Article
UDC: 514
Language: Russian
Citation: D. V. Zakharov, “Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and $\mathbb{R}^{2,2}$”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 31–40; Funct. Anal. Appl., 45:1 (2011), 25–32
Citation in format AMSBIB
\Bibitem{Zak11}
\by D.~V.~Zakharov
\paper Weierstrass Representation for Discrete Isotropic Surfaces in $\mathbb{R}^{2,1}$, $\mathbb{R}^{3,1}$, and~$\mathbb{R}^{2,2}$
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 31--40
\mathnet{http://mi.mathnet.ru/faa3029}
\crossref{https://doi.org/10.4213/faa3029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848738}
\zmath{https://zbmath.org/?q=an:1271.53012}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 25--32
\crossref{https://doi.org/10.1007/s10688-011-0003-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952800109}
Linking options:
  • https://www.mathnet.ru/eng/faa3029
  • https://doi.org/10.4213/faa3029
  • https://www.mathnet.ru/eng/faa/v45/i1/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024