Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 3, Pages 63–65
DOI: https://doi.org/10.4213/faa2996
(Mi faa2996)
 

This article is cited in 17 scientific papers (total in 17 papers)

Brief communications

On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations

A. R. Alievab, S. S. Mirzoeva

a Baku State University
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
References:
Abstract: In this note, we establish sufficient conditions for the correct and unique solvability of various boundary value problems for a class of even-order operator-differential equations on the half-axis. These conditions are unimprovable in terms of operator coefficients of the equation. We note that the principal part of the equation under study suffers a discontinuity.
Keywords: Hilbert space, self-adjoint operator, operator-differential equation, discontinuous coefficient, regular solution, isomorphism, intermediate derivatives.
Received: 15.04.2009
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 3, Pages 209–211
DOI: https://doi.org/10.1007/s10688-010-0025-y
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. R. Aliev, S. S. Mirzoev, “On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations”, Funktsional. Anal. i Prilozhen., 44:3 (2010), 63–65; Funct. Anal. Appl., 44:3 (2010), 209–211
Citation in format AMSBIB
\Bibitem{AliMir10}
\by A.~R.~Aliev, S.~S.~Mirzoev
\paper On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 3
\pages 63--65
\mathnet{http://mi.mathnet.ru/faa2996}
\crossref{https://doi.org/10.4213/faa2996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760514}
\zmath{https://zbmath.org/?q=an:1271.47037}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 3
\pages 209--211
\crossref{https://doi.org/10.1007/s10688-010-0025-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282097300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957101116}
Linking options:
  • https://www.mathnet.ru/eng/faa2996
  • https://doi.org/10.4213/faa2996
  • https://www.mathnet.ru/eng/faa/v44/i3/p63
  • This publication is cited in the following 17 articles:
    1. Kalemkush U.O., “On a Boundary Value Problem For Fourth-Order Operator-Differential Equations With a Variable Coefficient”, Azerbaijan J. Math., 10:1 (2020), 181–192  mathscinet  zmath  isi
    2. Mirzoev S.S., Rustamova L.A., “On a Boundary Value Problem For Second Order Operator Differential Equations”, Proceedings of the7Th International Conference on Control and Optimization With Industrial Applications, Vol. 1, eds. Fikret A., Tamer B., Baku State Univ, Inst Applied Mathematics, 2020, 287–289  mathscinet  isi
    3. Gesztesy F., Naboko S.N., Weikard R., Zinchenko M., “Donoghue-Type M-Functions For Schrodinger Operators With Operator-Valued Potentials”, J. Anal. Math., 137:1 (2019), 373–427  crossref  mathscinet  isi
    4. Aliev A.R., Soylemezo M.A., “Solvability Conditions in Weighted Sobolev Type Spaces For One Class of Inverse Parabolic Operator-Differential Equations”, Azerbaijan J. Math., 9:1 (2019), 59–75  mathscinet  isi
    5. Aliev A.R., Mirzoev S.S., Soylemezo M.A., “On Solvability of Third-Order Operator Differential Equation With Parabolic Principal Part in Weighted Space”, J. Funct. space, 2017, 2932134  crossref  mathscinet  zmath  isi  scopus
    6. N. N. Shadrina, “O vliyanii parametrov na razreshimost nekotorykh zadach sopryazheniya dlya ellipticheskikh uravnenii”, Sib. elektron. matem. izv., 13 (2016), 411–425  mathnet  crossref
    7. Mirzoev S.S., Aliev A.R., Gasimova G.M., “Solvability conditions of a boundary value problem with operator coefficients and related estimates of the norms of intermediate derivative operators”, Dokl. Math., 94:2 (2016), 566–568  crossref  mathscinet  zmath  isi  elib  scopus
    8. Al-Aidarous E.S., Aliev A.R., Rzayev E.S., Zedan H.A., “Fourth Order Elliptic Operator-Differential Equations With Unbounded Operator Boundary Conditions in the Sobolev-Type Spaces”, Bound. Value Probl., 2015, 191  crossref  mathscinet  zmath  isi  elib  scopus
    9. Aliev A.R., Elbably A.L., “on a Class of Operator-Differential Equations of the Third Order With Multiple Characteristics on the Whole Axis in the Weighted Space”, Math. Slovaca, 65:3 (2015), 667–682  crossref  mathscinet  zmath  isi  scopus
    10. Z.F. El-Raheem, A.H. Nasser, “On the spectral investigation of the scattering problem for some version of one-dimensional Schródinger equation with turning point”, Bound. Value Probl., 2014, 97, 12 pp.  crossref  mathscinet  zmath  isi  scopus
    11. S. S. Mirzoev, A. R. Aliev, L. A. Rustamova, “On the Boundary Value Problem with the Operator in Boundary Conditions for the Operator-Differential Equation of Second Order with Discontinous Coefficients”, Zhurn. matem. fiz., anal., geom., 9:2 (2013), 207–226  mathnet  mathscinet
    12. K. A. Kerimov, S. S. Mirzoyev, “On a Problem for Operator-Differential Second-Order Equations with Nonlocal Boundary Condition”, Math. Notes, 94:3 (2013), 330–334  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Gesztesy F., Weikard R., Zinchenko M., “On Spectral Theory for Schrodinger Operators with Operator-Valued Potentials”, J. Differ. Equ., 255:7 (2013), 1784–1827  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Gesztesy F., Weikard R., Zinchenko M., “Initial Value Problems and Weyl-Titchmarsh Theory for Schrodinger Operators with Operator-Valued Potentials”, Oper. Matrices, 7:2 (2013), 241–283  crossref  mathscinet  zmath  isi  scopus
    15. Aliev A.R., Elbably A.L., “Well-Posedness of a Boundary Value Problem for a Class of Third-Order Operator-Differential Equations”, Bound. Value Probl., 2013, 140  crossref  mathscinet  zmath  isi  scopus
    16. S. S. Mirzoev, I. Dzh. Dzhafarov, “On the Solvability of a Boundary-Value Problem for Second-Order Partial Differential Operator Equations”, Math. Notes, 91:3 (2012), 445–448  mathnet  crossref  crossref  mathscinet  isi  elib
    17. S. S. Mirzoyev, A. R. Aliev, L. A. Rustamova, “Solvability Conditions for Boundary-Value Problems for Elliptic Operator-Differential Equations with Discontinuous Coefficient”, Math. Notes, 92:5 (2012), 722–726  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1137
    Full-text PDF :285
    References:149
    First page:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025