Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 3, Pages 65–69
DOI: https://doi.org/10.4213/faa2988
(Mi faa2988)
 

Brief communications

On Stably $\mathcal{K}$-Monotone Banach Couples

S. V. Astashkin, K. E. Tikhomirov

Samara State University
References:
Abstract: The $\mathcal{K}$-monotonicity of Banach couples which is stable with respect to multiplication of weight by a constant is studied. Suppose that $E$ is a separable Banach lattice of two-sided sequences of reals such that $\|e_n\|=1$ ($n\in\mathbb{N}$), where $\{e_n\}_{n\in\mathbb{Z}}$ is the canonical basis. It is shown that $\vec{E}=(E,E(2^{-k}))$ is a stably $\mathcal{K}$-monotone couple if and only if $\vec{E}$ is $\mathcal{K}$-monotone and $E$ is shift-invariant. A non-trivial example of a shift-invariant separable Banach lattice $E$ such that the couple $\vec{E}$ is $\mathcal{K}$-monotone is constructed. This result contrasts with the following well-known theorem of Kalton: If $E$ is a separable symmetric sequence space such that the couple $\vec{E}$ is $\mathcal{K}$-monotone, then either $E=l_p$ ($1\le p<\infty$) or $E=c_0$.
Keywords: interpolation of operators, Peetre $\mathcal{K}$-functional, $\mathcal{K}$-monotone Banach couple, shift-invariant space.
Received: 18.09.2008
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 3, Pages 212–215
DOI: https://doi.org/10.1007/s10688-010-0026-x
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
Language: Russian
Citation: S. V. Astashkin, K. E. Tikhomirov, “On Stably $\mathcal{K}$-Monotone Banach Couples”, Funktsional. Anal. i Prilozhen., 44:3 (2010), 65–69; Funct. Anal. Appl., 44:3 (2010), 212–215
Citation in format AMSBIB
\Bibitem{AstTik10}
\by S.~V.~Astashkin, K.~E.~Tikhomirov
\paper On Stably $\mathcal{K}$-Monotone Banach Couples
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 3
\pages 65--69
\mathnet{http://mi.mathnet.ru/faa2988}
\crossref{https://doi.org/10.4213/faa2988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760515}
\zmath{https://zbmath.org/?q=an:1271.46024}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 3
\pages 212--215
\crossref{https://doi.org/10.1007/s10688-010-0026-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282097300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957051060}
Linking options:
  • https://www.mathnet.ru/eng/faa2988
  • https://doi.org/10.4213/faa2988
  • https://www.mathnet.ru/eng/faa/v44/i3/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :175
    References:78
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024