Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 3, Pages 50–62
DOI: https://doi.org/10.4213/faa2994
(Mi faa2994)
 

This article is cited in 19 scientific papers (total in 19 papers)

Frames in Banach Spaces

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: The notion of a frame in a Banach space with respect to a model space of sequences is introduced. This notion is different from the notions of an atomic decomposition, Banach frame in the sense of Gröchenig, (unconditional) Schauder frame in the sense of Han and Larson, and other known definitions of frames for Banach spaces. The frames introduced in this paper are shown to play a universal role in the solution of the general problem of representation of functions by series. A projective description of these frames is given. A criterion for the existence of a linear frame expansion algorithm and an analogue of the extremality property for a frame expansion are obtained.
Keywords: frame, Banach frame, atomic decomposition, representation system, basis, projector, coefficient space, null series, complemented subspace.
Received: 15.04.2009
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 3, Pages 199–208
DOI: https://doi.org/10.1007/s10688-010-0024-z
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: P. A. Terekhin, “Frames in Banach Spaces”, Funktsional. Anal. i Prilozhen., 44:3 (2010), 50–62; Funct. Anal. Appl., 44:3 (2010), 199–208
Citation in format AMSBIB
\Bibitem{Ter10}
\by P.~A.~Terekhin
\paper Frames in Banach Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 3
\pages 50--62
\mathnet{http://mi.mathnet.ru/faa2994}
\crossref{https://doi.org/10.4213/faa2994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760513}
\zmath{https://zbmath.org/?q=an:1271.42043}
\elib{https://elibrary.ru/item.asp?id=15331455}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 3
\pages 199--208
\crossref{https://doi.org/10.1007/s10688-010-0024-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282097300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957076240}
Linking options:
  • https://www.mathnet.ru/eng/faa2994
  • https://doi.org/10.4213/faa2994
  • https://www.mathnet.ru/eng/faa/v44/i3/p50
  • This publication is cited in the following 19 articles:
    1. Ilya Izbiakov, Sergey Novikov, Pavel Terekhin, “Complement property and frames in the phase retrieval problem”, Funct. Anal. Appl., 59:1 (2025), 11–18  mathnet  crossref  crossref
    2. P. A. Terekhin, “Ortorekursivnye razlozheniya, porozhdennye yadrom Sege”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 23:4 (2023), 443–455  mathnet  crossref
    3. K. Mahesh Krishna, “FUNCTIONAL DEUTSCH UNCERTAINTY PRINCIPLE”, SSRN Journal, 2023  crossref
    4. Anton Baranov, Timur Batenev, “Representing Systems of Reproducing Kernels in Spaces of Analytic Functions”, Results Math, 78:4 (2023)  crossref
    5. K. Mahesh Krishna, P. Sam Johnson, “Frames for Metric Spaces”, Results Math, 77:1 (2022)  crossref
    6. K. Mahesh Krishna, “Metric, Schauder and Operator-Valued Frames (PhD Thesis)”, SSRN Journal, 2022  crossref
    7. K. S. Speransky, “On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szegö kernel in the Hardy space”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:3 (2021), 336–342  mathnet  crossref
    8. Yu. A. Farkov, “Freimy v analize Uolsha, matritsy Adamara i ravnomerno raspredelennye mnozhestva”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 17–30  mathnet  crossref
    9. K. Mahesh Krishna, P. Sam Johnson, “New identity on Parseval p-approximate Schauder frames and applications”, Journal of Interdisciplinary Mathematics, 24:7 (2021), 1751  crossref
    10. S. V. Astashkin, P. A. Terekhin, “Representation of functions in symmetric spaces by dilations and translations”, Funct. Anal. Appl., 54:1 (2020), 45–48  mathnet  crossref  crossref  isi  elib
    11. Astashkin V S. Terekhin P.A., “Representing Systems of Dilations and Translations in Symmetric Function Spaces”, J. Fourier Anal. Appl., 26:1 (2020)  crossref  isi
    12. K. S. Speransky, P. A. Terekhin, “On existence of frames based on the Szegö kernel in the Hardy space”, Russian Math. (Iz. VUZ), 63:2 (2019), 51–61  mathnet  crossref  crossref  isi
    13. Poumai Kh.T., Jahan Sh., “Atomic Systems For Operators”, Int. J. Wavelets Multiresolut. Inf. Process., 17:1 (2019), 1850066  crossref  mathscinet  zmath  isi
    14. Speransky K.S., Terekhin P.A., “A Representing System Generated By the Szego Kernel For the Hardy Space”, Indag. Math.-New Ser., 29:5 (2018), 1318–1325  crossref  mathscinet  zmath  isi  scopus
    15. Jahan Sh., Kumar V., Kaushik S.K., “On the Existence of Non-Linear Frames”, Arch. Math.-Brno, 53:2 (2017), 101–109  crossref  mathscinet  zmath  isi  scopus
    16. Poumai Kh.T., Kaushik S.K., “Some Results Concerning Riesz Bases and Frames in Banach Spaces”, Jordan J. Math. Stat., 10:1 (2017), 11–32  mathscinet  zmath  isi
    17. Poumai Kh.T., Kaushik S.K., “Retro Banach Frames, Almost Exact Retro Banach Frames in Banach Spaces”, Bull. Math. Anal. Appl., 7:1 (2015), 38–48  mathscinet  isi
    18. P. A. Terekhin, “Affinnye kvantovye freimy i ikh spektr”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 13:1(1) (2013), 32–36  mathnet  crossref  elib
    19. S. A. Kreis, “Freimy i periodicheskie gruppy operatorov”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 12:2 (2012), 14–18  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1054
    Full-text PDF :446
    References:129
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025