Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 4, Pages 26–44
DOI: https://doi.org/10.4213/faa2967
(Mi faa2967)
 

This article is cited in 9 scientific papers (total in 9 papers)

Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture

D. V. Millionshchikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (306 kB) Citations (9)
References:
Abstract: We consider the Lie algebra $L_1$ of formal vector fields on the line which vanish at the origin together with their first derivatives. V. M. Buchstaber and A. V. Shokurov showed that the universal enveloping algebra $U(L_1)$ is isomorphic to the Landweber–Novikov algebra $S$ tensored \with the reals. The cohomology $H^*(L_1)=H^*(U(L_1))$ was originally calculated by L. V. Goncharova. It follows from her computations that the multiplication in the cohomology $H^*(L_1)$ is trivial. Buchstaber conjectured that the cohomology $H^*(L_1)$ is generated with respect to nontrivial Massey products by one-dimensional cocycles. B. L. Feigin, D. B. Fuchs, and V. S. Retakh found a representation for additive generators of $H^*(L_1)$ in the desired form, but the Massey products indicated by them later proved to contain the zero element. In the present paper, we prove that $H^*(L_1)$ is recurrently generated with respect to nontrivial Massey products by two one-dimensional cocycles in $H^1(L_1)$.
Keywords: Massey product, graded Lie algebra, formal connection, Maurer–Cartan equation, representation, cohomology.
Received: 10.03.2009
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 4, Pages 264–278
DOI: https://doi.org/10.1007/s10688-009-0035-9
Bibliographic databases:
Document Type: Article
UDC: 515.143.5+512.667+512.818.4
Language: Russian
Citation: D. V. Millionshchikov, “Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture”, Funktsional. Anal. i Prilozhen., 43:4 (2009), 26–44; Funct. Anal. Appl., 43:4 (2009), 264–278
Citation in format AMSBIB
\Bibitem{Mil09}
\by D.~V.~Millionshchikov
\paper Algebra of Formal Vector Fields on the Line and Buchstaber's Conjecture
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 4
\pages 26--44
\mathnet{http://mi.mathnet.ru/faa2967}
\crossref{https://doi.org/10.4213/faa2967}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2596653}
\zmath{https://zbmath.org/?q=an:05664265}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 4
\pages 264--278
\crossref{https://doi.org/10.1007/s10688-009-0035-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275375400003}
Linking options:
  • https://www.mathnet.ru/eng/faa2967
  • https://doi.org/10.4213/faa2967
  • https://www.mathnet.ru/eng/faa/v43/i4/p26
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:697
    Full-text PDF :282
    References:65
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024