Loading [MathJax]/jax/output/CommonHTML/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 4, Pages 14–25
DOI: https://doi.org/10.4213/faa2962
(Mi faa2962)
 

This article is cited in 24 scientific papers (total in 24 papers)

On the Spectrum of the Stokes Operator

A. A. Ilyin

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: We prove Li–Yau type lower bounds for the eigenvalues of the Stokes operator and give applications to the attractors of the Navier–Stokes equations.
Keywords: Stokes operator, Navier–Stokes equations, attractor dimension, Lieb–Thirring inequalities.
Received: 21.02.2008
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 4, Pages 254–263
DOI: https://doi.org/10.1007/s10688-009-0034-x
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. A. Ilyin, “On the Spectrum of the Stokes Operator”, Funktsional. Anal. i Prilozhen., 43:4 (2009), 14–25; Funct. Anal. Appl., 43:4 (2009), 254–263
Citation in format AMSBIB
\Bibitem{Ily09}
\by A.~A.~Ilyin
\paper On the Spectrum of the Stokes Operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 4
\pages 14--25
\mathnet{http://mi.mathnet.ru/faa2962}
\crossref{https://doi.org/10.4213/faa2962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2596652}
\zmath{https://zbmath.org/?q=an:1185.35165}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 4
\pages 254--263
\crossref{https://doi.org/10.1007/s10688-009-0034-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275375400002}
Linking options:
  • https://www.mathnet.ru/eng/faa2962
  • https://doi.org/10.4213/faa2962
  • https://www.mathnet.ru/eng/faa/v43/i4/p14
  • This publication is cited in the following 24 articles:
    1. Manil T. Mohan, K. Sakthivel, S. S. Sritharan, “Dynamic programming of the stochastic 2D-Navier-Stokes equations forced by Lévy noise”, MCRF, 2024  crossref
    2. Federico Butori, Eliseo Luongo, “Large deviations principle for the inviscid limit of fluid dynamic systems in 2D bounded domains”, Electron. J. Probab., 29:none (2024)  crossref
    3. A. A. Egorova, A. S. Shamaev, “Problem of the Distributed Control of the Emulsion Vibrations of Weakly Viscous Compressible Liquids”, J. Comput. Syst. Sci. Int., 63:6 (2024), 904  crossref
    4. Alessio Falocchi, Filippo Gazzola, “The evolution Navier–Stokes equations in a cube under Navier boundary conditions: rarefaction and uniqueness of global solutions”, Calc. Var., 62:8 (2023)  crossref
    5. Xueli SONG, Xi DENG, Baoming QIAO, “Dimension Estimate of the Global Attractor for a 3D Brinkman- Forchheimer Equation”, Wuhan Univ. J. Nat. Sci., 28:1 (2023), 1  crossref
    6. Manil T. Mohan, “Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with “fading memory””, EECT, 11:1 (2022), 125  crossref
    7. Baron A., “Determination of Hydraulic Resistance of Channels Using Spectral Geometry Methods”, Fluid Dyn. Res., 53:6 (2021), 065508  crossref  mathscinet  isi  scopus
    8. E. Ortega-Torres, M. Poblete-Cantellano, M. A. Rojas-Medar, “On the Convergence Rate of Spectral Approximations for the Equations of Nonhomogeneous Incompressible Fluids”, Numerical Functional Analysis and Optimization, 42:1 (2021), 91  crossref
    9. Manil T. Mohan, “Wentzell–Freidlin Large Deviation Principle for Stochastic Convective Brinkman–Forchheimer Equations”, J. Math. Fluid Mech., 23:3 (2021)  crossref
    10. Mohan M.T., “Global and Exponential Attractors For the 3D Kelvin-Voigt-Brinkman-Forchheimer Equations”, Discrete Contin. Dyn. Syst.-Ser. B, 25:9 (2020), 3393–3436  crossref  mathscinet  zmath  isi
    11. Storn J., “Computation of the Lbb Constant For the Stokes Equation With a Least-Squares Finite Element Method”, SIAM J. Numer. Anal., 58:1 (2020), 86–108  crossref  mathscinet  zmath  isi
    12. St. Petersburg Math. J., 31:3 (2020), 479–493  mathnet  crossref  isi  elib
    13. Alexei Ilyin, Ari Laptev, “Berezin–Li–Yau inequalities on domains on the sphere”, Journal of Mathematical Analysis and Applications, 473:2 (2019), 1253  crossref
    14. Jin Ch., “Global Solvability and Boundedness to a Coupled Chemotaxis-Fluid Model With Arbitrary Porous Medium Diffusion”, J. Differ. Equ., 265:1 (2018), 332–353  crossref  mathscinet  zmath  isi
    15. Duy Phan, Rodrigues S.S., “Gevrey regularity for Navier–Stokes equations under Lions boundary conditions”, J. Funct. Anal., 272:7 (2017), 2865–2898  crossref  mathscinet  zmath  isi  scopus
    16. de Aguiar R., Climent-Ezquerra B., Rojas-Medar M.A., Rojas-Medar M.D., “On the Convergence of Galerkin Spectral Methods for a Bioconvective Flow”, J. Math. Fluid Mech., 19:1 (2017), 91–104  crossref  mathscinet  zmath  isi  scopus
    17. Jin Ch., “Large Time Periodic Solutions to Coupled Chemotaxis-Fluid Models”, Z. Angew. Math. Phys., 68:6 (2017), 137  crossref  mathscinet  zmath  isi
    18. Ilyin A., Patni K., Zelik S., “Upper Bounds For the Attractor Dimension of Damped Navier–Stokes Equations in R-2”, Discret. Contin. Dyn. Syst., 36:4 (2016), 2085–2102  crossref  mathscinet  zmath  isi  elib
    19. B. Climent-Ezquerra, M. Poblete-Cantellano, M. A. Rojas-Medar, “On the convergence of spectral approximations for the heat convection equations”, Rev Mat Complut, 29:2 (2016), 405  crossref
    20. Michele Coti Zelati, Ciprian G. Gal, “Singular Limits of Voigt Models in Fluid Dynamics”, J. Math. Fluid Mech., 17:2 (2015), 233  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:715
    Full-text PDF :294
    References:101
    First page:26
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025