Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 4, Pages 45–66
DOI: https://doi.org/10.4213/faa2970
(Mi faa2970)
 

This article is cited in 44 scientific papers (total in 44 papers)

Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex

L. A. Petrov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: We construct a two-parameter family of diffusion processes $\mathbf{X}_{\alpha,\theta}$ on the Kingman simplex, which consists of all nonincreasing infinite sequences of nonnegative numbers with sum less than or equal to one. The processes on this simplex arise as limits of finite Markov chains on partitions of positive integers.
For $\alpha=0$, our process coincides with the infinitely-many-neutral-alleles diffusion model constructed by Ethier and Kurtz (1981) in population genetics. The general two-parameter case apparently lacks population-genetic interpretation. In the present paper, we extend Ethier and Kurtz's main results to the two-parameter case. Namely, we show that the (two-parameter) Poisson–Dirichlet distribution $\mathrm{PD}(\alpha,\theta)$ is the unique stationary distribution for the process $\mathbf{X}_{\alpha,\theta}$ and that the process is ergodic and reversible with respect to $\mathrm{PD}(\alpha,\theta)$. We also compute the spectrum of the generator of $\mathbf{X}_{\alpha,\theta}$. The Wright–Fisher diffusions on finite-dimensional simplices turn out to be special cases of $\mathbf{X}_{\alpha,\theta}$ for certain degenerate parameter values.
Keywords: two-parameter Poisson–Dirichlet measure, diffusion process, Kingman graph, Ewens–Pitman partition structure.
Received: 08.10.2008
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 4, Pages 279–296
DOI: https://doi.org/10.1007/s10688-009-0036-8
Bibliographic databases:
Document Type: Article
UDC: 519.217
Language: Russian
Citation: L. A. Petrov, “Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex”, Funktsional. Anal. i Prilozhen., 43:4 (2009), 45–66; Funct. Anal. Appl., 43:4 (2009), 279–296
Citation in format AMSBIB
\Bibitem{Pet09}
\by L.~A.~Petrov
\paper Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 4
\pages 45--66
\mathnet{http://mi.mathnet.ru/faa2970}
\crossref{https://doi.org/10.4213/faa2970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2596654}
\zmath{https://zbmath.org/?q=an:05664266}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 4
\pages 279--296
\crossref{https://doi.org/10.1007/s10688-009-0036-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275375400004}
Linking options:
  • https://www.mathnet.ru/eng/faa2970
  • https://doi.org/10.4213/faa2970
  • https://www.mathnet.ru/eng/faa/v43/i4/p45
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :223
    References:97
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024