Abstract:
In this paper, the proof of a Trotter–Kato type theorem in a variable Banach space is given and some special cases and examples are considered.
Keywords:
convergence in a variable space, two-scale convergence, resolvent convergence, Trotter–Kato theorem.
Citation:
V. V. Zhikov, S. E. Pastukhova, “On the Trotter–Kato Theorem in a Variable Space”, Funktsional. Anal. i Prilozhen., 41:4 (2007), 22–29; Funct. Anal. Appl., 41:4 (2007), 264–270
\Bibitem{ZhiPas07}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper On the Trotter--Kato Theorem in a Variable Space
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 4
\pages 22--29
\mathnet{http://mi.mathnet.ru/faa2876}
\crossref{https://doi.org/10.4213/faa2876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411603}
\zmath{https://zbmath.org/?q=an:1158.47027}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 4
\pages 264--270
\crossref{https://doi.org/10.1007/s10688-007-0024-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253520400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349037621}
Linking options:
https://www.mathnet.ru/eng/faa2876
https://doi.org/10.4213/faa2876
https://www.mathnet.ru/eng/faa/v41/i4/p22
This publication is cited in the following 10 articles:
Nafiri S., “Uniform Polynomial Decay and Approximation in Control of a Family of Abstract Thermoelastic Models”, J. Dyn. Control Syst., 2021
Meshkova Yu.M., “On Homogenization of the First Initial-Boundary Value Problem For Periodic Hyperbolic Systems”, Appl. Anal., 99:9 (2020), 1528–1563
Kamotski I.V., Smyshlyaev V.P., “Two-Scale Homogenization For a General Class of High Contrast Pde Systems With Periodic Coefficients”, Appl. Anal., 98:1-2, SI (2019), 64–90
Licht Ch., Weller T., “Approximation of Semi-Groups in the Sense of Trotter and Asymptotic Mathematical Modeling in Physics of Continuous Media”, Discret. Contin. Dyn. Syst.-Ser. S, 12:6 (2019), 1709–1741
Koltai P., Lie H.Ch., Plonka M., “Frechet Differentiable Drift Dependence of Perron-Frobenius and Koopman Operators For Non-Deterministic Dynamics”, Nonlinearity, 32:11 (2019), 4232–4257
Cherdantsev M., Cherednichenko K., Cooper Sh., “Extreme Localization of Eigenfunctions to One-Dimensional High-Contrast Periodic Problems With a Defect”, SIAM J. Math. Anal., 50:6 (2018), 5825–5856
V. V. Zhikov, S. E. Pastukhova, “On gaps in the spectrum of the operator of elasticity theory on a high contrast periodic structure”, J Math Sci, 188:3 (2013), 227
Muradov T.R., “On basicity of perturbed system of exponents in Lebesgue space with variable summability factor”, Dokl. Math., 85:2 (2012), 219–221
Bilalov B.T., Guseynov Z.G., “Basicity of a system of exponents with a piecewise linear phase in variable spaces”, Mediterr. J. Math., 9:3 (2012), 487–498
I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable
exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156