Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2007, Volume 41, Issue 4, Pages 30–45
DOI: https://doi.org/10.4213/faa2877
(Mi faa2877)
 

This article is cited in 26 scientific papers (total in 26 papers)

Stability of Existence of Nonhyperbolic Measures for C1C1-Diffeomorphisms

V. A. Kleptsynabcd, M. B. Nalskyab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
c CNRS — Unit of Mathematics, Pure and Applied
d University of Geneva
References:
Abstract: In the space of diffeomorphisms of an arbitrary closed manifold of dimension 3, we construct an open set such that each diffeomorphism in this set has an invariant ergodic measure with respect to which one of the Lyapunov exponents is zero. These diffeomorphisms are constructed to have a partially hyperbolic invariant set on which the dynamics is conjugate to a soft skew product with fiber the circle. It is the central Lyapunov exponent that proves to be zero in this case, and the construction is based on an analysis of properties of the corresponding skew products.
Keywords: Lyapunov exponent, partial hyperbolicity, dynamical system, skew product.
Received: 10.04.2006
English version:
Functional Analysis and Its Applications, 2007, Volume 41, Issue 4, Pages 271–283
DOI: https://doi.org/10.1007/s10688-007-0025-8
Bibliographic databases:
Document Type: Article
UDC: 519.987.5+517.938.5
Language: Russian
Citation: V. A. Kleptsyn, M. B. Nalsky, “Stability of Existence of Nonhyperbolic Measures for C1-Diffeomorphisms”, Funktsional. Anal. i Prilozhen., 41:4 (2007), 30–45; Funct. Anal. Appl., 41:4 (2007), 271–283
Citation in format AMSBIB
\Bibitem{KleNal07}
\by V.~A.~Kleptsyn, M.~B.~Nalsky
\paper Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 4
\pages 30--45
\mathnet{http://mi.mathnet.ru/faa2877}
\crossref{https://doi.org/10.4213/faa2877}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411604}
\zmath{https://zbmath.org/?q=an:1178.37026}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 4
\pages 271--283
\crossref{https://doi.org/10.1007/s10688-007-0025-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253520400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349060115}
Linking options:
  • https://www.mathnet.ru/eng/faa2877
  • https://doi.org/10.4213/faa2877
  • https://www.mathnet.ru/eng/faa/v41/i4/p30
    Erratum
    This publication is cited in the following 26 articles:
    1. Abbas Fakhari, Maryam Khalaj, “Connectedness of the Set of Central Lyapunov Exponents”, J Dyn Control Syst, 30:4 (2024)  crossref
    2. Martha Łącka, “Non-hyperbolic ergodic measures with the full support and positive entropy”, Monatsh Math, 200:1 (2023), 163  crossref
    3. Ali Tahzibi, Jinhua Zhang, “Disintegrations of non‐hyperbolic ergodic measures along the center foliation of DA maps”, Bulletin of London Math Soc, 55:3 (2023), 1404  crossref
    4. L. J. Díaz, K. Gelfert, M. Rams, “Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles”, Commun. Math. Phys., 394:1 (2022), 73  crossref
    5. Barrientos P.G. Malicet D., “Extremal Exponents of Random Products of Conservative Diffeomorphisms”, Math. Z., 296:3-4 (2020), 1185–1207  crossref  mathscinet  isi
    6. Wang X. Zhang J., “Ergodic Measures With Multi-Zero Lyapunov Exponents Inside Homoclinic Classes”, J. Dyn. Differ. Equ., 32:2 (2020), 631–664  crossref  mathscinet  zmath  isi  scopus
    7. Bonatti Ch. Zhang J., “Periodic Measures and Partially Hyperbolic Homoclinic Classes”, Trans. Am. Math. Soc., 372:2 (2019), 755–802  crossref  mathscinet  isi
    8. Cheng Ch. Crovisier S. Gan Sh. Wang X. Yang D., “Hyperbolicity Versus Non-Hyperbolic Ergodic Measures Inside Homoclinic Classes”, Ergod. Theory Dyn. Syst., 39:7 (2019), 1805–1823  crossref  mathscinet  isi
    9. Bonatti Ch. Zhang J., “On the Existence of Non-Hyperbolic Ergodic Measures as the Limit of Periodic Measures”, Ergod. Theory Dyn. Syst., 39:11 (2019), 2932–2967  crossref  mathscinet  zmath  isi  scopus
    10. Christian Bonatti, Lorenzo J. Díaz, Jairo Bochi, “A criterion for zero averages and full support of ergodic measures”, Mosc. Math. J., 18:1 (2018), 15–61  mathnet  crossref
    11. A. V. Okunev, I. S. Shilin, “On the attractors of step skew products over the Bernoulli shift”, Proc. Steklov Inst. Math., 297 (2017), 235–253  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. L. J. Díaz, K. Gelfert, M. Rams, “Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products”, Proc. Steklov Inst. Math., 297 (2017), 98–115  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Gorodetski A. Pesin Ya., “Path Connectedness and Entropy Density of the Space of Hyperbolic Ergodic Measures”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, ed. Katok A. Pesin Y. Hertz F., Amer Mathematical Soc, 2017, 111–121  crossref  mathscinet  zmath  isi
    14. Ilyashenko Yu. Shilin I., “Attractors and Skew Products”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, ed. Katok A. Pesin Y. Hertz F., Amer Mathematical Soc, 2017, 155–175  crossref  mathscinet  zmath  isi  scopus
    15. Diaz L.J. Gelfert K. Rams M., “Nonhyperbolic Step Skew-Products: Ergodic Approximation”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 34:6 (2017), 1561–1598  crossref  mathscinet  zmath  isi  scopus
    16. Bochi J. Bonatti Ch. Diaz L.J., “Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures”, Commun. Math. Phys., 344:3 (2016), 751–795  crossref  mathscinet  zmath  isi  scopus
    17. Ali Tahzibi, Andrey Gogolev, “Center Lyapunov exponents in partially hyperbolic dynamics”, JMD, 8:3/4 (2015), 549  crossref
    18. Bochi J. Bonatti Ch. Diaz L.J., “Robust Vanishing of All Lyapunov Exponents for Iterated Function Systems”, Math. Z., 276:1-2 (2014), 469–503  crossref  mathscinet  zmath  isi  scopus
    19. Diaz L.J. Gelfert K., “Porcupine-Like Horseshoes: Topological and Ergodic Aspects”, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics, 54, ed. Ibanez S. DelRio J. Pumarino A. Rodriguez J., Springer-Verlag Berlin, 2013, 199–219  crossref  mathscinet  zmath  isi  scopus
    20. Bonatti C., Grines V., Pécou E., “Non-hyperbolic ergodic measures with large support”, Nonlinearity, 23:3 (2010), 687–710  crossref  mathscinet  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:907
    Full-text PDF :290
    References:111
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025