Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2007, Volume 41, Issue 4, Pages 1–21
DOI: https://doi.org/10.4213/faa2875
(Mi faa2875)
 

This article is cited in 24 scientific papers (total in 24 papers)

To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics
References:
Abstract: For strongly elliptic systems with Douglis–Nirenberg structure, we investigate the regularity of variational solutions to the Dirichlet and Neumann problems in a bounded Lipschitz domain. The solutions of the problems with homogeneous boundary conditions are originally defined in the simplest $L_2$-Sobolev spaces $H^\sigma$. The regularity results are obtained in the potential spaces $H^\sigma_p$ and Besov spaces $B^\sigma_p$. In the case of second-order systems, the author's results obtained a year ago are strengthened. The Dirichlet problem with nonhomogeneous boundary conditions is considered using Whitney arrays.
Keywords: strong ellipticity, Lipschitz domain, Dirichlet problem, Neumann problem, variational solution, potential space, Besov space, Whitney array.
Received: 01.05.2007
English version:
Functional Analysis and Its Applications, 2007, Volume 41, Issue 4, Pages 247–263
DOI: https://doi.org/10.1007/s10688-007-0023-x
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. S. Agranovich, “To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 41:4 (2007), 1–21; Funct. Anal. Appl., 41:4 (2007), 247–263
Citation in format AMSBIB
\Bibitem{Agr07}
\by M.~S.~Agranovich
\paper To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 4
\pages 1--21
\mathnet{http://mi.mathnet.ru/faa2875}
\crossref{https://doi.org/10.4213/faa2875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411602}
\zmath{https://zbmath.org/?q=an:1159.35319}
\elib{https://elibrary.ru/item.asp?id=13542608}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 4
\pages 247--263
\crossref{https://doi.org/10.1007/s10688-007-0023-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253520400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349068887}
Linking options:
  • https://www.mathnet.ru/eng/faa2875
  • https://doi.org/10.4213/faa2875
  • https://www.mathnet.ru/eng/faa/v41/i4/p1
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1089
    Full-text PDF :466
    References:90
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024