Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 76–82
DOI: https://doi.org/10.31857/S2686954322020163
(Mi danma254)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Singular integral operators with a generalized Cauchy kernel

A. P. Soldatovabcd

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics
c National Research University "Moscow Power Engineering Institute"
d Academy of Science of the Republic of Sakha (Yakutia)
Citations (1)
References:
Abstract: Singular integral operators with piecewise continuous matrix coefficients are considered on a piecewise smooth curve in weighted Lebesgue spaces. In contrast to the classical case, the operators have generalized Cauchy kernels arising as a parametrix of first-order elliptic systems in the plane. A Fredholmness criterion and an index formula for these operators are obtained in weighted Lebesgue spaces.
Keywords: singular integral operators, piecewise Lyapunov curve, generalized Cauchy kernels, Fredholm property, index formula, weighted Lebesgue spaces, first-order elliptic systems.
Presented: E. I. Moiseev
Received: 02.03.2021
Revised: 02.03.2021
Accepted: 04.02.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 117–122
DOI: https://doi.org/10.1134/S1064562422020168
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. P. Soldatov, “Singular integral operators with a generalized Cauchy kernel”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 76–82; Dokl. Math., 105:2 (2022), 117–122
Citation in format AMSBIB
\Bibitem{Sol22}
\by A.~P.~Soldatov
\paper Singular integral operators with a generalized Cauchy kernel
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 76--82
\mathnet{http://mi.mathnet.ru/danma254}
\crossref{https://doi.org/10.31857/S2686954322020163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448480}
\elib{https://elibrary.ru/item.asp?id=48506208}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 117--122
\crossref{https://doi.org/10.1134/S1064562422020168}
Linking options:
  • https://www.mathnet.ru/eng/danma254
  • https://www.mathnet.ru/eng/danma/v503/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:138
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024