Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 70–75
DOI: https://doi.org/10.31857/S2686954322020151
(Mi danma253)
 

MATHEMATICS

On convergent series expansions for solutions of nonlinear ordinary differential equations

V. S. Samovol

National Research University "Higher School of Economics", Moscow, Russia
References:
Abstract: We consider a large class of nonlinear ordinary differential equations of arbitrary order with coefficients in the form of power series that converge in a neighborhood of the origin. There are known power-geometry methods and algorithms based on them for the computation of power-logarithmic series (Dulac series) that formally satisfy such equations. We prove a sufficient condition for the convergence of such formal solutions.
Keywords: Newton polygon, continuable solution, formal solution, Dulac series, convergence.
Presented: B. N. Chetverushkin
Received: 18.04.2021
Revised: 28.12.2021
Accepted: 21.01.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 112–116
DOI: https://doi.org/10.1134/S1064562422020156
Bibliographic databases:
Document Type: Article
UDC: 517.922
Language: Russian
Citation: V. S. Samovol, “On convergent series expansions for solutions of nonlinear ordinary differential equations”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 70–75; Dokl. Math., 105:2 (2022), 112–116
Citation in format AMSBIB
\Bibitem{Sam22}
\by V.~S.~Samovol
\paper On convergent series expansions for solutions of nonlinear ordinary differential equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 70--75
\mathnet{http://mi.mathnet.ru/danma253}
\crossref{https://doi.org/10.31857/S2686954322020151}
\elib{https://elibrary.ru/item.asp?id=48506207}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 112--116
\crossref{https://doi.org/10.1134/S1064562422020156}
Linking options:
  • https://www.mathnet.ru/eng/danma253
  • https://www.mathnet.ru/eng/danma/v503/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:69
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024