Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 503, Pages 83–86
DOI: https://doi.org/10.31857/S2686954322020175
(Mi danma256)
 

MATHEMATICS

On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze–Samarskii type

O. V. Solonukhaab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b Mathematical Institute of RUDN University, Moscow, Russia
References:
Abstract: We consider a quasilinear parabolic boundary value problem with a nonlocal boundary condition of Bitsadze–Samarskii type. A theorem on the existence and uniqueness of a periodic solution of this problem is proved.
Keywords: periodic solution, nonlocal boundary conditions of Bitsadze–Samarskii type, parabolic equation, maximal monotone operator, generalized solutions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-03-2020-223/3
This work was supported by the Ministry of Education and Science of the Russian Federation within the state assignment, agreement no. 075-03-2020-223/3 (FSSF-2020-0018).
Presented: E. I. Moiseev
Received: 17.11.2021
Revised: 17.11.2021
Accepted: 03.02.2022
English version:
Doklady Mathematics, 2022, Volume 105, Issue 2, Pages 123–126
DOI: https://doi.org/10.1134/S106456242202017X
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: O. V. Solonukha, “On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze–Samarskii type”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022), 83–86; Dokl. Math., 105:2 (2022), 123–126
Citation in format AMSBIB
\Bibitem{Sol22}
\by O.~V.~Solonukha
\paper On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze--Samarskii type
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 503
\pages 83--86
\mathnet{http://mi.mathnet.ru/danma256}
\crossref{https://doi.org/10.31857/S2686954322020175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448481}
\elib{https://elibrary.ru/item.asp?id=48506209}
\transl
\jour Dokl. Math.
\yr 2022
\vol 105
\issue 2
\pages 123--126
\crossref{https://doi.org/10.1134/S106456242202017X}
Linking options:
  • https://www.mathnet.ru/eng/danma256
  • https://www.mathnet.ru/eng/danma/v503/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:89
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024