Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 16, Pages 38–46 (Mi cmfd47)  

This article is cited in 7 scientific papers (total in 7 papers)

On some optimal control problem in the Voigt model of the motion of a viscoelastic fluid

V. G. Zvyagin, M. Yu. Kuz'min

Voronezh State University
Full-text PDF (163 kB) Citations (7)
References:
Abstract: The external feedback control problem in the Voigt model of the motion of a viscoelastic fluid is investigated. To this end, we prove the existence of weak solutions of the initial-boundary problem with the multi-valued right-hand side in the model considered and show the existence of a solution minimizing a given bounded lower semicontinuous functional.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 5, Pages 1618–1627
DOI: https://doi.org/10.1007/s10958-008-0085-1
Bibliographic databases:
UDC: 517.977+517.958
Language: Russian
Citation: V. G. Zvyagin, M. Yu. Kuz'min, “On some optimal control problem in the Voigt model of the motion of a viscoelastic fluid”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, CMFD, 16, PFUR, M., 2006, 38–46; Journal of Mathematical Sciences, 149:5 (2008), 1618–1627
Citation in format AMSBIB
\Bibitem{ZvyKuz06}
\by V.~G.~Zvyagin, M.~Yu.~Kuz'min
\paper On some optimal control problem in the Voigt model of the motion of a~viscoelastic fluid
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~2
\serial CMFD
\yr 2006
\vol 16
\pages 38--46
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd47}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336444}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 5
\pages 1618--1627
\crossref{https://doi.org/10.1007/s10958-008-0085-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650678843}
Linking options:
  • https://www.mathnet.ru/eng/cmfd47
  • https://www.mathnet.ru/eng/cmfd/v16/p38
  • This publication is cited in the following 7 articles:
    1. André Eikmeier, “Existence of strong solutions for the Oldroyd model with multivalued right-hand side”, Nonlinear Analysis, 225 (2022), 113127  crossref
    2. V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Optimal Feedback Control Problem for the Bingham Model with Periodical Boundary Conditions on Spatial Variables”, J Math Sci, 244:6 (2020), 959  crossref
    3. V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Optimalnoe upravlenie s obratnoi svyazyu dlya modeli Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 47, K 85-letiyu Vsevoloda Alekseevicha SOLONNIKOVA, Zap. nauchn. sem. POMI, 477, POMI, SPb., 2018, 54–86  mathnet
    4. V. G. Zvyagin, “Topological approximation approach to study of mathematical problems of hydrodynamics”, Journal of Mathematical Sciences, 201:6 (2014), 830–858  mathnet  crossref
    5. Zvyagin V.G., Turbin M.V., “Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions”, J. Optim. Theory Appl., 148:1 (2011), 146–163  crossref  mathscinet  zmath  isi  elib
    6. E. S. Baranovskii, “Optimal problems for parabolic-type systems with aspheric sets of admissible controls”, Russian Math. (Iz. VUZ), 53:12 (2009), 63–67  mathnet  crossref  mathscinet  zmath
    7. V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, Journal of Mathematical Sciences, 168:2 (2010), 157–308  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :179
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025