Abstract:
We construct the method of approximate solution for the differential equation of oscillations of a satellite on elliptic orbits subject to the gravity torque and the light pressure torque. Parabolic orbits are included as a limiting case. The metric of a weighted Sobolev space is used as a measure of the vicinity. This allows us to construct a uniform approximation of solution with respect to the eccentricity of the orbit.
To prove such an approximation, we use the Leray–Schauder degree theory and the Krasnosel'skij theorem of Galerkin approximations for compact vector fields adapted to the problem under consideration. To establish the uniform estimate of the convergence of approximate solutions to the solution, we also use a modification of an appropriate Krasnosel'skij theorem.
Citation:
I. I. Kosenko, “Topological degree and approximation of solutions for nonregular problems of mechanics: Oscillations of satellites on elliptic orbits”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, CMFD, 16, PFUR, M., 2006, 68–95; Journal of Mathematical Sciences, 149:5 (2008), 1539–1566
\Bibitem{Kos06}
\by I.~I.~Kosenko
\paper Topological degree and approximation of solutions for nonregular problems of mechanics: Oscillations of satellites on elliptic orbits
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~2
\serial CMFD
\yr 2006
\vol 16
\pages 68--95
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd49}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336446}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 5
\pages 1539--1566
\crossref{https://doi.org/10.1007/s10958-008-0081-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920834817}
Linking options:
https://www.mathnet.ru/eng/cmfd49
https://www.mathnet.ru/eng/cmfd/v16/p68
This publication is cited in the following 3 articles:
I. I. Kosenko, “Vynuzhdennye kolebaniya sputnika pod deistviem sil svetovogo davleniya i gravitatsii”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 300–326
A. A. Burov, V. I. Nikonov, “Satellite in Elliptical Orbit: on Numerical Detection of Periodic Movements and Analysis of Their Stability”, Comput. Math. and Math. Phys., 64:9 (2024), 2094
A. A. Burov, I. I. Kosenko, “Dvizhenie sputnika s peremennym raspredeleniem mass v tsentralnom pole sil gravitatsii”, Nelineinaya dinam., 13:4 (2017), 519–531