Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 16, Pages 22–37 (Mi cmfd46)  

On topological properties of manifolds of eigenfunctions generated by a family of periodic Sturm–Liouville problems

Ya. M. Dymarskii

Luhansk Taras Schevchenko State Pedagogical University
References:
Abstract: In the paper, we study manifolds of eigenfunctions of a fixed oscillation. Then, solving the trivial inverse problem of reconstruction of a potential by an eigenfunction, we describe the properties of manifolds of potentials. The approach proposed allows one to link topological properties of manifolds of eigenfunctions with those of manifolds of potentials.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 5, Pages 1488–1503
DOI: https://doi.org/10.1007/s10958-008-0078-0
Bibliographic databases:
UDC: 517.927.25+517.984.55
Language: Russian
Citation: Ya. M. Dymarskii, “On topological properties of manifolds of eigenfunctions generated by a family of periodic Sturm–Liouville problems”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, CMFD, 16, PFUR, M., 2006, 22–37; Journal of Mathematical Sciences, 149:5 (2008), 1488–1503
Citation in format AMSBIB
\Bibitem{Dym06}
\by Ya.~M.~Dymarskii
\paper On topological properties of manifolds of eigenfunctions generated by a~family of periodic Sturm--Liouville problems
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~2
\serial CMFD
\yr 2006
\vol 16
\pages 22--37
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336443}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 5
\pages 1488--1503
\crossref{https://doi.org/10.1007/s10958-008-0078-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920848235}
Linking options:
  • https://www.mathnet.ru/eng/cmfd46
  • https://www.mathnet.ru/eng/cmfd/v16/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:409
    Full-text PDF :115
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024