Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 3, Pages 418–436
DOI: https://doi.org/10.22363/2413-3639-2017-63-3-418-436
(Mi cmfd327)
 

Lagrangian representations for linear and nonlinear transport

S. Bianchini, P. Bonicatto, E. Marconi

S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy
References:
Abstract: In this note we present a unifying approach for two classes of first order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.
Document Type: Article
UDC: 517.952
Language: Russian
Citation: S. Bianchini, P. Bonicatto, E. Marconi, “Lagrangian representations for linear and nonlinear transport”, Differential and functional differential equations, CMFD, 63, no. 3, Peoples' Friendship University of Russia, M., 2017, 418–436
Citation in format AMSBIB
\Bibitem{BiaBonMar17}
\by S.~Bianchini, P.~Bonicatto, E.~Marconi
\paper Lagrangian representations for linear and nonlinear transport
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 3
\pages 418--436
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd327}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-3-418-436}
Linking options:
  • https://www.mathnet.ru/eng/cmfd327
  • https://www.mathnet.ru/eng/cmfd/v63/i3/p418
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025