Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 3, Pages 392–417
DOI: https://doi.org/10.22363/2413-3639-2017-63-3-392-417
(Mi cmfd326)
 

This article is cited in 3 scientific papers (total in 3 papers)

Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions

G. A. Bocharovab, Yu. M. Nechepurenkoac, M. Yu. Khristichenkoac, D. S. Grebennikovac

a Institute of Numerical Mathematics of the Russian Academy of Sciences, 8 Gubkina st., 119333 Moscow, Russia
b RUDN University, 6 Miklukho-Maklaya st., 117198 Moscow, Russia
c Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 4 Miusskaya sq., 125047 Moscow, Russia
Full-text PDF (782 kB) Citations (3)
References:
Abstract: In this paper, we apply optimal perturbations to control mathematical models of infectious diseases expressed as systems of nonlinear differential equations with delayed argument. We develop the method for calculation of perturbations of the initial state of a dynamical system with delayed argument producing maximal amplification in the given local norm taking into account weights of perturbation components. For the model of experimental virus infection, we construct optimal perturbation for two types of stationary states, with low or high virus load, corresponding to different variants of chronic virus infection flow.
Document Type: Article
UDC: 517.929+517.958:57
Language: Russian
Citation: G. A. Bocharov, Yu. M. Nechepurenko, M. Yu. Khristichenko, D. S. Grebennikov, “Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions”, Differential and functional differential equations, CMFD, 63, no. 3, Peoples' Friendship University of Russia, M., 2017, 392–417
Citation in format AMSBIB
\Bibitem{BocNecKhr17}
\by G.~A.~Bocharov, Yu.~M.~Nechepurenko, M.~Yu.~Khristichenko, D.~S.~Grebennikov
\paper Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 3
\pages 392--417
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd326}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-3-392-417}
Linking options:
  • https://www.mathnet.ru/eng/cmfd326
  • https://www.mathnet.ru/eng/cmfd/v63/i3/p392
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :101
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024