Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 3, Pages 437–454
DOI: https://doi.org/10.22363/2413-3639-2017-63-3-437-454
(Mi cmfd328)
 

This article is cited in 2 scientific papers (total in 2 papers)

Method of monotone solutions for reaction-diffusion equations

V. Volpertabc, V. Vougalterd

a Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
b INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France
c RUDN University, 6 Miklukho-Maklaya st., 117198 Moscow, Russia
d Department of Mathematics, University of Toronto, Toronto, M5S 2E4 Ontario, Canada
Full-text PDF (233 kB) Citations (2)
References:
Abstract: Existence of solutions of reaction-diffusion systems of equations in unbounded domains is studied by the Leray–Schauder (LS) method based on the topological degree for elliptic operators in unbounded domains and on a priori estimates of solutions in weighted spaces. We identify some reactiondiffusion systems for which there exist two subclasses of solutions separated in the function space, monotone and non-monotone solutions. A priori estimates and existence of solutions are obtained for monotone solutions allowing to prove their existence by the LS method. Various applications of this method are given.
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. Volpert, V. Vougalter, “Method of monotone solutions for reaction-diffusion equations”, Differential and functional differential equations, CMFD, 63, no. 3, Peoples' Friendship University of Russia, M., 2017, 437–454
Citation in format AMSBIB
\Bibitem{VolVou17}
\by V.~Volpert, V.~Vougalter
\paper Method of monotone solutions for reaction-diffusion equations
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 3
\pages 437--454
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd328}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-3-437-454}
Linking options:
  • https://www.mathnet.ru/eng/cmfd328
  • https://www.mathnet.ru/eng/cmfd/v63/i3/p437
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :91
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024