Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 272–303
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-272-303
(Mi cheb655)
 

This article is cited in 3 scientific papers (total in 3 papers)

Integrals and indicators of subharmonic functions. I

K. G. Malyutin, M. V. Kabanko, T. I. Malyutina

Kursk State University
Full-text PDF (482 kB) Citations (3)
References:
Abstract: In the first part of our study, we consider general problems of the theory of density functions and $\rho$-semi-additive functions that are often used in the theory of growth of entire and subharmonic functions and in other branches of mathematics. In the theory of density functions, an important and often quoted theorem is the Polya theorem on the existence of a maximal and minimal density. The assertion 3 of the theorem 6 or the theorem 7 of the paper can be considered as the extension of the Polya theorem to a more general class of functions. The density functions have certain semi-additivity properties. Some problems of the theory of density functions and $\rho$-semi-additive functions are presented in the first part of our study. The central one here is the theorem 23, concerning the conditions for the existence at the zero of the derivative of $\rho$-semi-additivity function and estimation of integrals $ \int\limits_a^bf(t)\,d\nu(t) $ through the density functions of the function $\nu$. We note that the function $\nu$, in general, is not a distribution function of some countably-additive measure, and the integral must be understood as the Riemann-Stieltjes integral, and not as a Lebesgue integral in measure $\nu$.
Keywords: proximate order, density function, maximal and minimal density, Polya theorem, semi-additive function, Riemann-Stieltjes integral.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00236_a
Received: 05.05.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: K. G. Malyutin, M. V. Kabanko, T. I. Malyutina, “Integrals and indicators of subharmonic functions. I”, Chebyshevskii Sb., 19:2 (2018), 272–303
Citation in format AMSBIB
\Bibitem{MalKabMal18}
\by K.~G.~Malyutin, M.~V.~Kabanko, T.~I.~Malyutina
\paper Integrals and indicators of subharmonic functions. I
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 272--303
\mathnet{http://mi.mathnet.ru/cheb655}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-272-303}
\elib{https://elibrary.ru/item.asp?id=37112155}
Linking options:
  • https://www.mathnet.ru/eng/cheb655
  • https://www.mathnet.ru/eng/cheb/v19/i2/p272
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :73
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024