Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 304–318
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-304-318
(Mi cheb656)
 

This article is cited in 1 scientific paper (total in 1 paper)

Weakly invertible $ n $-quasigroups

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (389 kB) Citations (1)
References:
Abstract: We study the $ n $-quasigroups $ (n \geqslant3) $ with the following property weak invertibility. If on any two sets of $ n $ arguments with the equal initials, equal ends, but with different middle parts (of the same length), the result of the operation is the same, then for any identical beginnings (of a other length), with the previous middle parts and for any identical ends (the corresponding length), the result of the operation will be the same. For such $ n $-quasigroups An analog of the Post-Gluskin-Hoss theorem is proved, which reduces the operation of an $ n $-quasigroup to a group one. The representation of the $ n $-quasigroup operation proved by the theorem with the help of the automorphism of the group turned out to occur in weaker (and quite natural) assumptions, rather than the associativity and $ (i, j) $-associativity required earlier. Well-known $ (i, j) $-associative $ n $-quasigroups satisfy the condition of weak invertibility.
Keywords: $ n $-quasigroup, $ (i, j) $-associativity, group automorphism, Post–Gluskin–Hoss theorem.
Received: 27.04.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 512.548.74
Language: Russian
Citation: F. M. Malyshev, “Weakly invertible $ n $-quasigroups”, Chebyshevskii Sb., 19:2 (2018), 304–318
Citation in format AMSBIB
\Bibitem{Mal18}
\by F.~M.~Malyshev
\paper Weakly invertible $ n $-quasigroups
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 304--318
\mathnet{http://mi.mathnet.ru/cheb656}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-304-318}
\elib{https://elibrary.ru/item.asp?id=37112156}
Linking options:
  • https://www.mathnet.ru/eng/cheb656
  • https://www.mathnet.ru/eng/cheb/v19/i2/p304
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :45
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024