Loading [MathJax]/jax/output/SVG/config.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 1, Pages 130–139 (Mi cheb458)  

Linear sums and the Gaussian multiplication theorem

O. V. Kolpakova, V. N. Chubarikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Estimations of linear sums with Bernoulli polynomial of the first degree are given. If the coefficient of the linear function is a irrational number with the bounded partial quotients, the arithmetical sum has the “squaring” estimation. The Roth's theorem gives the similar estimation for all algebraic number, but the constants in estimations be nonefficient. New difficulties appears for sums over primes. Their are connected with the consideration of bilinear forms.
Bibliography: 24 titles.
Keywords: arithmetical sums, the Gaussian multiplication theorem for the Euler's Gamma-function, the functional theorem of the Gaussian type, the Bernoulli polynomials, algebraic numbers, arithmetical sums over primes, the Roth's theorem.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00071_а
Received: 08.12.2015
Accepted: 10.03.2016
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: O. V. Kolpakova, V. N. Chubarikov, “Linear sums and the Gaussian multiplication theorem”, Chebyshevskii Sb., 17:1 (2016), 130–139
Citation in format AMSBIB
\Bibitem{KolChu16}
\by O.~V.~Kolpakova, V.~N.~Chubarikov
\paper Linear sums and the Gaussian multiplication theorem
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 1
\pages 130--139
\mathnet{http://mi.mathnet.ru/cheb458}
\elib{https://elibrary.ru/item.asp?id=25795075}
Linking options:
  • https://www.mathnet.ru/eng/cheb458
  • https://www.mathnet.ru/eng/cheb/v17/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025