Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 1, Pages 117–129 (Mi cheb457)  

On algebraic integers and monic polynomials of second degree

D. V. Koleda

Institute of Mathematics of the National Academy of Sciences of Belarus
References:
Abstract: In this paper we consider the algebraic integers of second degree and reducible quadratic monic polynomials with integer coefficients.
Let $Q\ge 4$ be an integer. Define $\Omega_n(Q,S)$ to be the number of algebraic integers of degree $n$ and height $\le Q$ belonging to $S\subseteq\mathbb{R}$. We improve the remainder term of the asymptotic formula for $\Omega_2(Q,I)$, where $I$ is an arbitrary interval.
Denote by $\mathcal{R}(Q)$ the set of reducible monic polynomials of second degree with integer coefficients and height $\le Q$. We obtain the formula
$$ \#\mathcal{R}(Q) = 2 \sum_{k=1}^Q \tau(k) + 2Q + \left[\sqrt{Q}\right] - 1, $$
where $\tau(k)$ is the number of divisors of $k$.
Besides we show that the number of real algebraic integers of second degree and height $\le Q$ has the asymptotics
$$ \Omega_2(Q,\mathbb{R}) = 8 Q^2 - \frac{16}{3}Q\sqrt{Q} - 4Q\ln Q + 8(1-\gamma) Q + O\!\left(\sqrt{Q}\right), $$
where $\gamma$ is the Euler constant.
It is known that the density function of the distribution of algebraic integers of degree $n$ uniformly tends to the density function of algebraic numbers of degree $n-1$. We show that for $n=2$ the integral of their difference over the real line has nonzero limit as height of numbers tends to infinity.
Bibliography: 17 titles.
Keywords: algebraic integers, distribution of algebraic integers, quadratic irrationalities, integral monic polynomials.
Received: 18.12.2015
Accepted: 11.03.2016
Bibliographic databases:
Document Type: Article
UDC: 511.35, 511.48, 511.75
Language: Russian
Citation: D. V. Koleda, “On algebraic integers and monic polynomials of second degree”, Chebyshevskii Sb., 17:1 (2016), 117–129
Citation in format AMSBIB
\Bibitem{Kol16}
\by D.~V.~Koleda
\paper On algebraic integers and monic polynomials of second degree
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 1
\pages 117--129
\mathnet{http://mi.mathnet.ru/cheb457}
\elib{https://elibrary.ru/item.asp?id=25795074}
Linking options:
  • https://www.mathnet.ru/eng/cheb457
  • https://www.mathnet.ru/eng/cheb/v17/i1/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :128
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024