Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2016, Volume 17, Issue 1, Pages 140–147 (Mi cheb459)  

This article is cited in 6 scientific papers (total in 6 papers)

On non-linear Kloosterman sum

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (699 kB) Citations (6)
References:
Abstract: Exponential sums of a special type — so-called Kloosterman sums — play key role in the series of number-theoretic problems concerning the distribution of inverse residues in the residual rings of given modulo $q$. At the same time, in many cases, the estimates of such sums are based on A. Weil's bound of so-called complete Kloosterman sum of prime modulo. This bound allows one to estimate Kloosterman sums of length $N\ge q^{0.5+\varepsilon}$ for any fixed $\varepsilon>0$ with power-saving factor. Weil's bound was proved originally by methods of algebraic geometry. Later, S. A. Stepanov gave an elementary proof of this bound, but this proof was also complete enough. The aim of this paper is to give an elementary proof of Kloosterman sum of length $N\ge q^{0.5+\varepsilon}$, which also leads to power-saving factor. This proof is based on the trick of “additive shift” of the variable of summation which is widely used in different problems of number theory.
Bibliography: 15 titles.
Keywords: inverse residues, Kloosterman sums, Weil's bound.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Received: 07.12.2015
Accepted: 10.03.2016
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 246–249
DOI: https://doi.org/10.1134/S1064562422700272
Bibliographic databases:
Document Type: Article
UDC: 511.321
Language: Russian
Citation: M. A. Korolev, “On non-linear Kloosterman sum”, Chebyshevskii Sb., 17:1 (2016), 140–147; Doklady Mathematics (Supplementary issues), 106:2 (2022), 246–249
Citation in format AMSBIB
\Bibitem{Kor16}
\by M.~A.~Korolev
\paper On non-linear Kloosterman sum
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 1
\pages 140--147
\mathnet{http://mi.mathnet.ru/cheb459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3476245}
\elib{https://elibrary.ru/item.asp?id=25795076}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 246--249
\crossref{https://doi.org/10.1134/S1064562422700272}
Linking options:
  • https://www.mathnet.ru/eng/cheb459
  • https://www.mathnet.ru/eng/cheb/v17/i1/p140
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025