Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 2, Pages 236–256
DOI: https://doi.org/10.22405/2226-8383-2018-22-2-236-256
(Mi cheb1031)
 

Arithmetic properties of direct product of $p$-adic fields elements, II

A. S. Samsonov

Moscow State Pedagogical University (Moscow)
References:
Abstract: The article takes a look at transcendence and algebraic independence problems, introduces statements and proofs of theorems for some kinds of elements from direct product of $p$-adic fields and polynomial estimation theorem. Let $\mathbb{Q}_p$ be the $p$-adic completion of $\mathbb{Q}$, $\Omega_{p}$ be the completion of the algebraic closure of $\mathbb{Q}_p$, $g=p_1p_2\ldots p_n$ be a composition of separate prime numbers, $\mathbb{Q}_g$ be the $g$-adic completion of $\mathbb{Q}$, in other words $\mathbb{Q}_{p_1}\oplus\ldots\oplus\mathbb{Q}_{p_n}$. The ring $\Omega_g\cong\Omega_{p_1}\oplus\ldots\oplus\Omega_{p_n}$, a subring $\mathbb{Q}_g$, transcendence and algebraic independence over $\mathbb{Q}_g$ are under consideration. Here are appropriate theorems for numbers not only like $\alpha=\sum\limits_{j=0}^{\infty}a_{j}g^{r_{j}}$ where $a_{j}\in \mathbb Z_g,$ and non-negative rationals $r_{j}$ increase strictly unbounded. But, for numbers $f(\alpha)$, where $f(z)=\sum\limits_{j=0}^{\infty}c_jz^j\in\mathbb Z_g[[z]]$. Furthermore, let $\widehat{\mathbb Q}\cong\prod\limits_{p}\mathbb{Q}_p$ be the ring of polyadic numbers, then, the article takes a look at $\widehat{\Omega}=\prod\limits_{p}\Omega_p$, there are similar results for numbers like $f(\alpha)$, where $f(z)=\sum\limits_{j=0}^{\infty}c_jz^j\in\widehat{\mathbb Z}[[z]]$, $\alpha=\sum\limits_{k=1}^{\infty}a_{k}g^{r_{k}}$, $a_{k}\in \mathbb Z_g,$ $g=(p_1,\ldots,p_n,\ldots)$.
Keywords: $p$-adic numbers, $g$-adic numbers, polyadic numbers, transcendence, algebraic independence.
Document Type: Article
UDC: 511.464
Language: Russian
Citation: A. S. Samsonov, “Arithmetic properties of direct product of $p$-adic fields elements, II”, Chebyshevskii Sb., 22:2 (2021), 236–256
Citation in format AMSBIB
\Bibitem{Sam21}
\by A.~S.~Samsonov
\paper Arithmetic properties of direct product of $p$-adic fields elements,~II
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 2
\pages 236--256
\mathnet{http://mi.mathnet.ru/cheb1031}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-2-236-256}
Linking options:
  • https://www.mathnet.ru/eng/cheb1031
  • https://www.mathnet.ru/eng/cheb/v22/i2/p236
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :31
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024