Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 227–242
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-227-242
(Mi cheb965)
 

Arithmetic properties of direct product of $p$-adic fields elements

A. S. Samsonov

Moscow State Pedagogical University (Moscow)
References:
Abstract: The article considers the transcendence and algebraic independence problems, introduce statements and proofs of theorems for some kinds of elements from direct product of $p$-adic fields and polynomial estimation theorem. Let $\mathbb{Q}_p$ be the $p$-adic completion of $\mathbb{Q}$, $\Omega_{p}$ be the completion of the algebraic closure of $\mathbb{Q}_p$, $g=p_1p_2\ldots p_n$ be a composition of separate prime numbers, $\mathbb{Q}_g$ be the $g$-adic completion of $\mathbb{Q}$, in other words $\mathbb{Q}_{p_1}\oplus\ldots\oplus\mathbb{Q}_{p_n}$. The ring $\Omega_g\cong\Omega_{p_1}\oplus\ldots\oplus\Omega_{p_n}$, contains a subring $\mathbb{Q}_g$. The transcendence and algebraic independence over $\mathbb{Q}_g$ are under consideration. Here are appropriate theorems for numbers like $\alpha=\sum\limits_{j=0}^{\infty}a_{j}g^{r_{j}}$, where $a_{j}\in \mathbb Z_g,$ and non-negative rational numbers $r_{j}$ increase to strictly unbounded.
Keywords: $p$-adic numbers, $g$-adic numbers, transcendence, algebraic independence.
Received: 19.06.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 511.464
Language: Russian
Citation: A. S. Samsonov, “Arithmetic properties of direct product of $p$-adic fields elements”, Chebyshevskii Sb., 21:4 (2020), 227–242
Citation in format AMSBIB
\Bibitem{Sam20}
\by A.~S.~Samsonov
\paper Arithmetic properties of direct product of $p$-adic fields elements
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 227--242
\mathnet{http://mi.mathnet.ru/cheb965}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-227-242}
Linking options:
  • https://www.mathnet.ru/eng/cheb965
  • https://www.mathnet.ru/eng/cheb/v21/i4/p227
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :27
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024