Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2013, Volume 16, Issue 1, Pages 107–115 (Mi adm439)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

Ideals in $(\mathcal{Z}^{+},\leq_{D})$

Sankar Sagi

Assistant Professor of Mathematics, College of Applied Sciences, Sohar, Sultanate of Oman
Full-text PDF (194 kB) Citations (1)
References:
Abstract: A convolution is a mapping $\mathcal{C}$ of the set $\mathcal{Z}^{+}$ of positive integers into the set $\mathcal{P}(\mathcal{Z}^{+})$ of all subsets of $\mathcal{Z}^{+}$ such that every member of $\mathcal{C}(n)$ is a divisor of $n$. If for any $n$, $D(n)$ is the set of all positive divisors of $n$, then $D$ is called the Dirichlet's convolution. It is well known that $\mathcal{Z}^{+}$ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution $\mathcal{C}$, one can define a binary relation $\leq_{\mathcal{C}}$ on $\mathcal{Z}^{+}$ by ` $m\leq_{\mathcal{C}}n $ if and only if $ m\in \mathcal{C}(n)$'. A general convolution may not induce a lattice on $\mathcal{Z^{+}}$. However most of the convolutions induce a meet semi lattice structure on $\mathcal{Z^{+}}$.In this paper we consider a general meet semi lattice and study it's ideals and extend these to $(\mathcal{Z}^{+},\leq_{D})$, where $D$ is the Dirichlet's convolution.
Keywords: Partial Order, Lattice, Semi Lattice, Convolution, Ideal.
Received: 17.12.2011
Revised: 27.03.2013
Bibliographic databases:
Document Type: Article
MSC: 06B10,11A99
Language: English
Citation: Sankar Sagi, “Ideals in $(\mathcal{Z}^{+},\leq_{D})$”, Algebra Discrete Math., 16:1 (2013), 107–115
Citation in format AMSBIB
\Bibitem{Sag13}
\by Sankar~Sagi
\paper Ideals in $(\mathcal{Z}^{+},\leq_{D})$
\jour Algebra Discrete Math.
\yr 2013
\vol 16
\issue 1
\pages 107--115
\mathnet{http://mi.mathnet.ru/adm439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184703}
Linking options:
  • https://www.mathnet.ru/eng/adm439
  • https://www.mathnet.ru/eng/adm/v16/i1/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024