Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2013, Volume 16, Issue 1, Pages 103–106 (Mi adm438)  

RESEARCH ARTICLE

On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field

V. Nesteruk

Algebra and Logic Department, Mechanics and Mathematics Faculty, Ivan Franko National University of L’viv, 1, Universytetska str., Lviv, 79000, Ukraine
References:
Abstract: In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field $k$: $\mathrm{ker}\,\hat{\phi}(k) \; \times \; \mathrm{coker}\,(\phi(k)) \longrightarrow k^*$, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1].
Keywords: pseudofinite field, isogeny, Tate pairing associated to an isogeny.
Received: 13.02.2012
Revised: 30.03.2013
Bibliographic databases:
Document Type: Article
MSC: 12G99, 14H05, 14K02
Language: English
Citation: V. Nesteruk, “On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field”, Algebra Discrete Math., 16:1 (2013), 103–106
Citation in format AMSBIB
\Bibitem{Nes13}
\by V.~Nesteruk
\paper On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
\jour Algebra Discrete Math.
\yr 2013
\vol 16
\issue 1
\pages 103--106
\mathnet{http://mi.mathnet.ru/adm438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184702}
Linking options:
  • https://www.mathnet.ru/eng/adm438
  • https://www.mathnet.ru/eng/adm/v16/i1/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024