Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2013, Volume 16, Issue 1, Pages 116–126 (Mi adm440)  

RESEARCH ARTICLE

Inverse semigroups generated by group congruences. The Möbius functions

E. D. Schwab

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas 79968
References:
Abstract: The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid.
Keywords: combinatorial inverse semigroup, group congruence, Möbius function, Möbius category.
Received: 20.05.2012
Revised: 30.07.2012
Bibliographic databases:
Document Type: Article
MSC: 20M18, 06A07
Language: English
Citation: E. D. Schwab, “Inverse semigroups generated by group congruences. The Möbius functions”, Algebra Discrete Math., 16:1 (2013), 116–126
Citation in format AMSBIB
\Bibitem{Sch13}
\by E.~D.~Schwab
\paper Inverse semigroups generated by group congruences. The M\"{o}bius functions
\jour Algebra Discrete Math.
\yr 2013
\vol 16
\issue 1
\pages 116--126
\mathnet{http://mi.mathnet.ru/adm440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184704}
Linking options:
  • https://www.mathnet.ru/eng/adm440
  • https://www.mathnet.ru/eng/adm/v16/i1/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024