Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 1, Pages 144–161 (Mi aa63)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Products of Toeplitz operators on the Bergman spaces A2αA2α

S. Potta, E. Strouseb

a Department of Mathematics, University of Glasgow, Glasgow, UK
b Departement de Mathematiques Pures, Université Bordeaux I, Talence, France
Full-text PDF (194 kB) Citations (8)
References:
Abstract: We give a sufficient and a necessary condition for the product of Toeplitz operators TαfTαˉgTαfTα¯g, with ffgg analytic, to be bounded on the weighted Bergman space L2a(D,(1|z|2)αdA). We also show that the only compact product of weighted Toeplitz operators is the trivial one.
Keywords: weighted Bergman spaces, Toeplitz operators, reproducing kernel thesis.
Received: 03.10.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 1, Pages 105–118
DOI: https://doi.org/10.1090/S1061-0022-06-00945-9
Bibliographic databases:
Document Type: Article
MSC: 47B35, 32A36
Language: English
Citation: S. Pott, E. Strouse, “Products of Toeplitz operators on the Bergman spaces A2α”, Algebra i Analiz, 18:1 (2006), 144–161; St. Petersburg Math. J., 18:1 (2007), 105–118
Citation in format AMSBIB
\Bibitem{PotStr06}
\by S.~Pott, E.~Strouse
\paper Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 144--161
\mathnet{http://mi.mathnet.ru/aa63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225216}
\zmath{https://zbmath.org/?q=an:1127.47028}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 105--118
\crossref{https://doi.org/10.1090/S1061-0022-06-00945-9}
Linking options:
  • https://www.mathnet.ru/eng/aa63
  • https://www.mathnet.ru/eng/aa/v18/i1/p144
  • This publication is cited in the following 8 articles:
    1. Kehe Zhu, Fields Institute Communications, 87, Function Spaces, Theory and Applications, 2023, 331  crossref
    2. Sehba B.F., “On the Weighted Estimate of the Bergman Projection”, Czech. Math. J., 68:2 (2018), 497–511  crossref  mathscinet  zmath  isi  scopus
    3. Rahm R., “the Essential Norm of Operators on l(2)-Valued Bergman-Type Function Spaces”, Complex Anal. Oper. Theory, 10:1 (2016), 69–96  crossref  mathscinet  zmath  isi  scopus
    4. Michalska M., Sobolewski P., “Bounded Toeplitz and Hankel Products on the Weighted Bergman Spaces of the Unit Ball”, J. Aust. Math. Soc., 99:2 (2015), 237–249  crossref  mathscinet  zmath  isi  scopus
    5. Mitkovski M., Wick B.D., “A Reproducing Kernel Thesis For Operators on Bergman-Type Function Spaces”, J. Funct. Anal., 267:7 (2014), 2028–2055  crossref  mathscinet  zmath  isi  elib  scopus
    6. Kerr R., “Products of Toeplitz operators on a vector valued Bergman space”, Integral Equations Operator Theory, 66:3 (2010), 367–395  crossref  mathscinet  zmath  isi  scopus
    7. Lu Yu., Liu Ch., “Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball”, Chin. Ann. Math. Ser. B, 30:3 (2009), 293–310  crossref  mathscinet  zmath  isi  scopus
    8. Grudsky S., Vasilevski N., “On the structure of the C-algebra generated by Toeplitz operators with piece-wise continuous symbols”, Complex Anal. Oper. Theory, 2:4 (2008), 525–548  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:543
    Full-text PDF :175
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025