Abstract:
We give a sufficient and a necessary condition for the product of Toeplitz operators TαfTαˉgTαfTα¯g, with ff, gg analytic, to be bounded on the weighted Bergman space L2a(D,(1−|z|2)αdA). We also show that the only compact product of weighted Toeplitz operators is the trivial one.
Citation:
S. Pott, E. Strouse, “Products of Toeplitz operators on the Bergman spaces A2α”, Algebra i Analiz, 18:1 (2006), 144–161; St. Petersburg Math. J., 18:1 (2007), 105–118
\Bibitem{PotStr06}
\by S.~Pott, E.~Strouse
\paper Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 144--161
\mathnet{http://mi.mathnet.ru/aa63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225216}
\zmath{https://zbmath.org/?q=an:1127.47028}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 105--118
\crossref{https://doi.org/10.1090/S1061-0022-06-00945-9}
Linking options:
https://www.mathnet.ru/eng/aa63
https://www.mathnet.ru/eng/aa/v18/i1/p144
This publication is cited in the following 8 articles:
Kehe Zhu, Fields Institute Communications, 87, Function Spaces, Theory and Applications, 2023, 331
Sehba B.F., “On the Weighted Estimate of the Bergman Projection”, Czech. Math. J., 68:2 (2018), 497–511
Rahm R., “the Essential Norm of Operators on l(2)-Valued Bergman-Type Function Spaces”, Complex Anal. Oper. Theory, 10:1 (2016), 69–96
Michalska M., Sobolewski P., “Bounded Toeplitz and Hankel Products on the Weighted Bergman Spaces of the Unit Ball”, J. Aust. Math. Soc., 99:2 (2015), 237–249
Mitkovski M., Wick B.D., “A Reproducing Kernel Thesis For Operators on Bergman-Type Function Spaces”, J. Funct. Anal., 267:7 (2014), 2028–2055
Kerr R., “Products of Toeplitz operators on a vector valued Bergman space”, Integral Equations Operator Theory, 66:3 (2010), 367–395
Lu Yu., Liu Ch., “Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball”, Chin. Ann. Math. Ser. B, 30:3 (2009), 293–310
Grudsky S., Vasilevski N., “On the structure of the C∗-algebra generated by Toeplitz operators with piece-wise continuous symbols”, Complex Anal. Oper. Theory, 2:4 (2008), 525–548