Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 1, Pages 108–123 (Mi aa61)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Weighted Sobolev-type embedding theorems for functions with symmetries

S. V. Ivanova, A. I. Nazarovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Full-text PDF (201 kB) Citations (5)
References:
Abstract: It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold $\mathcal M$ and a compact group of isometries $G$. They showed that the limit Sobolev exponent increases if there are no points in $\mathcal M$ with discrete orbits under the action of $G$.
In the paper, the situation where $\mathcal M$ contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for $W_p^1(\mathcal M)$ increases in the case of embeddings into weighted spaces $L_q(\mathcal M,w)$ instead of the usual $L_q$ spaces, where the weight function $w(x)$ is a positive power of the distance from $x$ to the set of points with discrete orbits. Also, embeddings of $W_p^1(\mathcal M)$ into weighted Hölder and Orlicz spaces are treated.
Received: 28.06.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 1, Pages 77–88
DOI: https://doi.org/10.1090/S1061-0022-06-00943-5
Bibliographic databases:
Document Type: Article
MSC: Primary 46E35; Secondary 58D99
Language: Russian
Citation: S. V. Ivanov, A. I. Nazarov, “Weighted Sobolev-type embedding theorems for functions with symmetries”, Algebra i Analiz, 18:1 (2006), 108–123; St. Petersburg Math. J., 18:1 (2007), 77–88
Citation in format AMSBIB
\Bibitem{IvaNaz06}
\by S.~V.~Ivanov, A.~I.~Nazarov
\paper Weighted Sobolev-type embedding theorems for functions with symmetries
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 108--123
\mathnet{http://mi.mathnet.ru/aa61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225214}
\zmath{https://zbmath.org/?q=an:1126.46022}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 77--88
\crossref{https://doi.org/10.1090/S1061-0022-06-00943-5}
Linking options:
  • https://www.mathnet.ru/eng/aa61
  • https://www.mathnet.ru/eng/aa/v18/i1/p108
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:675
    Full-text PDF :264
    References:100
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024