Abstract:
It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold M and a compact group of isometries G. They showed that the limit Sobolev exponent increases if there are no points in M with discrete orbits under the action of G.
In the paper, the situation where M contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for W1p(M) increases in the case of embeddings into weighted spaces Lq(M,w) instead of the usual Lq spaces, where the weight function w(x) is a positive power of the distance from x to the set of points with discrete orbits. Also, embeddings of W1p(M) into weighted Hölder and Orlicz spaces are treated.
Citation:
S. V. Ivanov, A. I. Nazarov, “Weighted Sobolev-type embedding theorems for functions with symmetries”, Algebra i Analiz, 18:1 (2006), 108–123; St. Petersburg Math. J., 18:1 (2007), 77–88
\Bibitem{IvaNaz06}
\by S.~V.~Ivanov, A.~I.~Nazarov
\paper Weighted Sobolev-type embedding theorems for functions with symmetries
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 108--123
\mathnet{http://mi.mathnet.ru/aa61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225214}
\zmath{https://zbmath.org/?q=an:1126.46022}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 77--88
\crossref{https://doi.org/10.1090/S1061-0022-06-00943-5}
Linking options:
https://www.mathnet.ru/eng/aa61
https://www.mathnet.ru/eng/aa/v18/i1/p108
This publication is cited in the following 5 articles:
Juan Carlos Fernández, Oscar Palmas, Jonatán Torres Orozco, “Equivariant Solutions to the Optimal Partition Problem for the Prescribed Q-Curvature Equation”, J Geom Anal, 34:4 (2024)
A. P. Scheglova, “Mnozhestvennost polozhitelnykh reshenii dlya obobschennogo uravneniya Khenona c drobnym laplasianom”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 48, K yubileyu Niny Nikolaevny URALTsEVOI, Zap. nauchn. sem. POMI, 489, POMI, SPb., 2020, 207–224
Cabrera O., Clapp M., “Multiple Solutions to Weakly Coupled Supercritical Elliptic Systems”, Ann. Mat. Pura Appl., 198:4 (2019), 1243–1255
A. P. Shcheglova, “The Neumann Problem for the Generalized Hénon Equation”, J Math Sci, 235:3 (2018), 360
Cabre X., Ros-Oton X., “Sobolev and Isoperimetric Inequalities with Monomial Weights”, J. Differ. Equ., 255:11 (2013), 4312–4336