Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 1, Pages 51–77 (Mi aa1682)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

A posteriori estimates of the deviation from exact solutions to variational problems under nonstandard coerciveness and growth conditions

S. E. Pastukhova

MIREA — Russian Technological University, Moscow
Full-text PDF (315 kB) Citations (1)
References:
Abstract: A posteriori estimates are proved for the accuracy of approximations of solutions to variational problems with nonstandard power functionals. More precisely, these are integral functionals with power type integrands having a variable exponent $ p( \cdot )$. It is assumed that $ p( \cdot )$ is bounded away from one and infinity. Estimates in the energy norm are obtained for the difference of the approximate and exact solutions. The majorant $ M$ in these estimates depends only on the approximation $ v$ and the data of the problem, but is independent of the exact solution $ u$. It is shown that $ M=M(v)$ vanishes as $ v$ tends to $ u$ and $ M(v)=0$ only if $ v=u$. The superquadratic and subquadratic cases (which means that $ p( \cdot )\ge 2$, or $ p( \cdot )\le 2$, respectively) are treated separately.
Keywords: variational problem with nonstandard coercivenes and growth conditions, a posteriori error estimates for approximate solutions, dual problem.
Received: 18.10.2018
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 1, Pages 39–57
DOI: https://doi.org/10.1090/spmj/1637
Bibliographic databases:
Document Type: Article
MSC: 49J40
Language: Russian
Citation: S. E. Pastukhova, “A posteriori estimates of the deviation from exact solutions to variational problems under nonstandard coerciveness and growth conditions”, Algebra i Analiz, 32:1 (2020), 51–77; St. Petersburg Math. J., 32:1 (2021), 39–57
Citation in format AMSBIB
\Bibitem{Pas20}
\by S.~E.~Pastukhova
\paper A posteriori estimates of the deviation from exact solutions to variational problems under nonstandard coerciveness and growth conditions
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 51--77
\mathnet{http://mi.mathnet.ru/aa1682}
\elib{https://elibrary.ru/item.asp?id=44976521}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 39--57
\crossref{https://doi.org/10.1090/spmj/1637}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100041640}
Linking options:
  • https://www.mathnet.ru/eng/aa1682
  • https://www.mathnet.ru/eng/aa/v32/i1/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024