|
Research Papers
Embeddings of Orlicz-Lorentz spaces into $ L_1$
J. Prochno Institute of Mathematics & Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
Abstract:
It is shown that the Orlicz-Lorentz spaces $ \ell ^n_{M,a}$, $ n\in \mathbb{N}$, with Orlicz function $ M$ and weight sequence $ a$ are uniformly isomorphic to subspaces of $ L_1$ if the norm $ \Vert \cdot \Vert _{M,a}$ satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces $ \mathrm {d}^n(a,p)$. The approach is based on combinatorial averaging techniques, and a new result of independent interest is proved, which relates suitable averages with Orlicz-Lorentz norms.
Keywords:
Orlicz spaces, Lorentz spaces, Orlicz–Lorentz space, subspace of $L_1$, combinatorial inequality.
Received: 15.05.2019
Citation:
J. Prochno, “Embeddings of Orlicz-Lorentz spaces into $ L_1$”, Algebra i Analiz, 32:1 (2020), 78–93; St. Petersburg Math. J., 32:1 (2021), 59–70
Linking options:
https://www.mathnet.ru/eng/aa1683 https://www.mathnet.ru/eng/aa/v32/i1/p78
|
Statistics & downloads: |
Abstract page: | 156 | Full-text PDF : | 24 | References: | 21 | First page: | 6 |
|