Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 1, Pages 78–93 (Mi aa1683)  

Research Papers

Embeddings of Orlicz-Lorentz spaces into $ L_1$

J. Prochno

Institute of Mathematics & Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
References:
Abstract: It is shown that the Orlicz-Lorentz spaces $ \ell ^n_{M,a}$, $ n\in \mathbb{N}$, with Orlicz function $ M$ and weight sequence $ a$ are uniformly isomorphic to subspaces of $ L_1$ if the norm $ \Vert \cdot \Vert _{M,a}$ satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces $ \mathrm {d}^n(a,p)$. The approach is based on combinatorial averaging techniques, and a new result of independent interest is proved, which relates suitable averages with Orlicz-Lorentz norms.
Keywords: Orlicz spaces, Lorentz spaces, Orlicz–Lorentz space, subspace of $L_1$, combinatorial inequality.
Funding agency Grant number
Austrian Science Fund P32405
The author was supported by a Visiting International Professor Fellowship from the Ruhr University Bochum and its Research School PLUS as well as by the Austrian Science Fund (FWF) Project P32405 “Asymptotic Geometric Analysis and Applications”.
Received: 15.05.2019
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 1, Pages 59–70
DOI: https://doi.org/10.1090/spmj/1638
Bibliographic databases:
Document Type: Article
MSC: 46B45
Language: English
Citation: J. Prochno, “Embeddings of Orlicz-Lorentz spaces into $ L_1$”, Algebra i Analiz, 32:1 (2020), 78–93; St. Petersburg Math. J., 32:1 (2021), 59–70
Citation in format AMSBIB
\Bibitem{Pro20}
\by J.~Prochno
\paper Embeddings of Orlicz-Lorentz spaces into $ L_1$
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 78--93
\mathnet{http://mi.mathnet.ru/aa1683}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 59--70
\crossref{https://doi.org/10.1090/spmj/1638}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100053340}
Linking options:
  • https://www.mathnet.ru/eng/aa1683
  • https://www.mathnet.ru/eng/aa/v32/i1/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :25
    References:24
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024