Abstract:
The paper is devoted to classification of irreducible real linear representations of noncommutative compact connected Lie groups GG whose Morse matrix coefficients have the minimal number of critical points permitted by the topology of GG.
Keywords:
compact Lie group, irreducible real linear representation, matrix coefficients, Morse function, taut immersions of smooth manifolds.
Citation:
M. V. Meshcheryakov, “Classification of taut irreducible real linear representations of compact connected Lie groups”, Algebra i Analiz, 32:1 (2020), 40–50; St. Petersburg Math. J., 32:1 (2021), 31–38
\Bibitem{Mes20}
\by M.~V.~Meshcheryakov
\paper Classification of taut irreducible real linear representations of compact connected Lie groups
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 40--50
\mathnet{http://mi.mathnet.ru/aa1681}
\elib{https://elibrary.ru/item.asp?id=44977236}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 31--38
\crossref{https://doi.org/10.1090/spmj/1636}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100020169}
Linking options:
https://www.mathnet.ru/eng/aa1681
https://www.mathnet.ru/eng/aa/v32/i1/p40
This publication is cited in the following 1 articles:
M. V. Meshcheryakov, “Upper estimates for the Morse numbers of the matrix elements of real linear irreducible representations for connected compact simple Lie groups”, St. Petersburg Math. J., 33:6 (2022), 971–980