Abstract:
The periodic Schrödinger operator $ H$ on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator $ H_{\pm }(t)=H\pm tV$, $ t>0$, where $ V\ge 0$ is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator $ H_{\pm }(t)$ for a large coupling constant.
Keywords:
discrete Schrödinger operator, integral operators, estimates of singular numbers, classes of compact operators.
Citation:
E. L. Korotyaev, V. A. Sloushch, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph”, Algebra i Analiz, 32:1 (2020), 12–39; St. Petersburg Math. J., 32:1 (2021), 9–29
\Bibitem{KorSlo20}
\by E.~L.~Korotyaev, V.~A.~Sloushch
\paper Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 12--39
\mathnet{http://mi.mathnet.ru/aa1680}
\elib{https://elibrary.ru/item.asp?id=44976282}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 9--29
\crossref{https://doi.org/10.1090/spmj/1635}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100039019}
Linking options:
https://www.mathnet.ru/eng/aa1680
https://www.mathnet.ru/eng/aa/v32/i1/p12
This publication is cited in the following 6 articles:
Evgeny L. Korotyaev, “The number of eigenvalues of discrete Hamiltonian periodic in time”, Journal of Mathematical Analysis and Applications, 2025, 129294
Z. Muminov, Sh. Alladustov, Sh. Lakaev, “Spectral and threshold analysis of a small rank perturbation of the discrete Laplacian”, J. Math. Anal. Appl., 496:2 (2021), 124827
E. Korotyaev, “Eigenvalues of periodic difference operators on lattice octants”, J. Math. Anal. Appl., 500:2 (2021), 125138
S. N. Lakaev, I. U. Alladustova, “The exact number of eigenvalues of the discrete Schrödinger operators in one-dimensional case”, Lobachevskii J. Math., 42:6, SI (2021), 1294–1303
A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, “Discrete Schrödinger Operator on a Tree, Angelesco Potentials, and Their Perturbations”, Proc. Steklov Inst. Math., 311 (2020), 1–9
Korotyaev E. Saburova N., “Scattering on Periodic Metric Graphs”, Rev. Math. Phys., 32:8 (2020), 2050024