Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 1, Pages 12–39 (Mi aa1680)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph

E. L. Korotyaev, V. A. Sloushch

Saint Petersburg State University
Full-text PDF (342 kB) Citations (5)
References:
Abstract: The periodic Schrödinger operator $ H$ on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator $ H_{\pm }(t)=H\pm tV$, $ t>0$, where $ V\ge 0$ is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator $ H_{\pm }(t)$ for a large coupling constant.
Keywords: discrete Schrödinger operator, integral operators, estimates of singular numbers, classes of compact operators.
Funding agency Grant number
Russian Science Foundation 18-11-00032
Russian Foundation for Basic Research 17-01-00668_а
The work of the first author is supported by a grant from the Russian Science Foundation 18-11-00032
Received: 10.01.2019
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 1, Pages 9–29
DOI: https://doi.org/10.1090/spmj/1635
Bibliographic databases:
Document Type: Article
MSC: Primary 35P20; Secondary 35R02
Language: Russian
Citation: E. L. Korotyaev, V. A. Sloushch, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph”, Algebra i Analiz, 32:1 (2020), 12–39; St. Petersburg Math. J., 32:1 (2021), 9–29
Citation in format AMSBIB
\Bibitem{KorSlo20}
\by E.~L.~Korotyaev, V.~A.~Sloushch
\paper Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 1
\pages 12--39
\mathnet{http://mi.mathnet.ru/aa1680}
\elib{https://elibrary.ru/item.asp?id=44976282}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 1
\pages 9--29
\crossref{https://doi.org/10.1090/spmj/1635}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610901000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100039019}
Linking options:
  • https://www.mathnet.ru/eng/aa1680
  • https://www.mathnet.ru/eng/aa/v32/i1/p12
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :44
    References:49
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024