Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 5, Pages 106–153 (Mi aa1670)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees

V. Vasyuninab, A. Osękowskic, L. Slavindb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
d University of Cincinnati
Full-text PDF (962 kB) Citations (1)
References:
Abstract: The explicit upper Bellman function is found for the natural dyadic maximal operator acting from $ \mathrm {BMO}(\mathbb{R}^n)$ into $ \mathrm {BLO}(\mathbb{R}^n)$. As a consequence, it is shown that the $ \mathrm {BMO}\to \mathrm {BLO}$ norm of the natural operator equals $ 1$ for all $ n$, and so does the norm of the classical dyadic maximal operator. The main result is a partial consequence of a theorem for the so-called $ \alpha $-trees, which generalize dyadic lattices. The Bellman function in this setting exhibits an interesting quasiperiodic structure depending on $ \alpha $, but also allows a majorant independent of $ \alpha $, hence a dimension-free norm constant. Also, the decay of the norm is described with respect to the growth of the difference between the average of a function on a cube and the infimum of its maximal function on that cube. An explicit norm-optimizing sequence is constructed.
Keywords: BMO, BLO $\alpha$-trees, maximal functions, explicit Bellman function, sharp constants.
Funding agency Grant number
Russian Science Foundation 14-41-00010
The second and third authors research was supported by the Russian Science Foundation grant 14-41-00010.
Received: 12.11.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 5, Pages 831–863
DOI: https://doi.org/10.1090/spmj/1625
Bibliographic databases:
Document Type: Article
MSC: 42A05, 42B35, 49K20
Language: Russian
Citation: V. Vasyunin, A. Osȩkowski, L. Slavin, “The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees”, Algebra i Analiz, 31:5 (2019), 106–153; St. Petersburg Math. J., 31:5 (2020), 831–863
Citation in format AMSBIB
\Bibitem{VasOseSla19}
\by V.~Vasyunin, A.~Os{\c e}kowski, L.~Slavin
\paper The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 5
\pages 106--153
\mathnet{http://mi.mathnet.ru/aa1670}
\elib{https://elibrary.ru/item.asp?id=45299446}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 5
\pages 831--863
\crossref{https://doi.org/10.1090/spmj/1625}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000569407100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091656556}
Linking options:
  • https://www.mathnet.ru/eng/aa1670
  • https://www.mathnet.ru/eng/aa/v31/i5/p106
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :33
    References:34
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024