Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 5, Pages 154–183 (Mi aa1671)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section

S. A. Nazarov

Saint Petersburg State University
Full-text PDF (330 kB) Citations (1)
References:
Abstract: Cylindrical acoustic waveguides with constant cross-section  $ \omega $ are considered, specifically, a straight waveguide $ \Omega ={\mathbb{R}}\times \omega \subset {\mathbb{R}}^d$ and a locally curved waveguide $ \Omega ^\varepsilon $ that depends on a parameter $ \varepsilon \in (0,1]$. For $ d>2$, in two different settings ( $ \varepsilon =1$ and $ \varepsilon \ll 1$), the task is to find an eigenvalue $ \lambda ^\varepsilon $ that is embedded in the continuous spectrum $ [0,+\infty )$ of the waveguide $ \Omega ^\varepsilon $ and, hence, is inherently unstable. In other words, a solution of the Neumann problem for the Helmholtz operator $ \Delta +\lambda ^\varepsilon $ arises that vanishes at infinity and implies an eigenfunction in the Sobolev space $ H^1(\Omega ^\varepsilon )$. In the first case, it is assumed that the cross-section $ \omega $ has a double symmetry and an eigenvalue arises for any nontrivial curvature of the axis of the waveguide $ \Omega ^\varepsilon $. In the second case, under an assumption on the shape of an asymmetric cross-section $ \omega $, the eigenvalue $ \lambda ^\varepsilon $ is formed by scrupulous fitting of the curvature $ O(\varepsilon )$ for small $ \varepsilon >0$.
Keywords: continuous and point spectra, eigenvalue, Neumann problem for the Laplace operator, curved cylinder, asymptotics, expanded scattering matrix.
Funding agency Grant number
Russian Science Foundation 17-11-01003
This work was supported by the Russian Science Foundation. (Project 17-11-01003)
Received: 07.08.2017
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 5, Pages 865–885
DOI: https://doi.org/10.1090/spmj/1626
Bibliographic databases:
Document Type: Article
MSC: 35P15
Language: Russian
Citation: S. A. Nazarov, “Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section”, Algebra i Analiz, 31:5 (2019), 154–183; St. Petersburg Math. J., 31:5 (2020), 865–885
Citation in format AMSBIB
\Bibitem{Naz19}
\by S.~A.~Nazarov
\paper Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 5
\pages 154--183
\mathnet{http://mi.mathnet.ru/aa1671}
\elib{https://elibrary.ru/item.asp?id=45296027}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 5
\pages 865--885
\crossref{https://doi.org/10.1090/spmj/1626}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000569407100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091672157}
Linking options:
  • https://www.mathnet.ru/eng/aa1671
  • https://www.mathnet.ru/eng/aa/v31/i5/p154
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :40
    References:47
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024