Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 5, Pages 90–105 (Mi aa1669)  

Research Papers

SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle

S. V. Buyalo

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The SRA-free condition for metric spaces (that is, spaces without Small Rough Angles) was introduced by Zolotov to study rectifiability for self-contracted curves in various metric spaces. A Möbius invariant version of this notion is introduced, which allows one to show that the zz-distance associated with the respective Möbius structure on the circle is nondegenerate. This result is an important part of a solution to the inverse problem of Möbius geometry on the circle.
Keywords: Möbius structures, cross-ratio, harmonic 4-tuples, self-contracted curves.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00128_a
Supported by RFBR Grant 17-01-00128a.
Received: 25.06.2019
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 5, Pages 819–829
DOI: https://doi.org/10.1090/spmj/1624
Bibliographic databases:
Document Type: Article
MSC: 51B10
Language: Russian
Citation: S. V. Buyalo, “SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle”, Algebra i Analiz, 31:5 (2019), 90–105; St. Petersburg Math. J., 31:5 (2020), 819–829
Citation in format AMSBIB
\Bibitem{Buy19}
\by S.~V.~Buyalo
\paper SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 5
\pages 90--105
\mathnet{http://mi.mathnet.ru/aa1669}
\elib{https://elibrary.ru/item.asp?id=45298081}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 5
\pages 819--829
\crossref{https://doi.org/10.1090/spmj/1624}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000569407100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091669816}
Linking options:
  • https://www.mathnet.ru/eng/aa1669
  • https://www.mathnet.ru/eng/aa/v31/i5/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :21
    References:32
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024