Abstract:
A second order elliptic equation with a small parameter at one of the highest order derivatives is considered in a three-dimensional domain. The limiting equation is a collection of two-dimensional elliptic equations in two-dimensional domains depending on one parameter. By the method of matching of asymptotic expansions, a uniform asymptotic approximation of the solution of a boundary-value problem is constructed and justified up to an arbitrary power of a small parameter.
Keywords:
asymptotic, boundary value problem, small parameter, matching of asymptotic expansions.
Citation:
A. M. Il'in, E. F. Lelikova, “On asymptotic approximations of solutions of an equation with a small parameter”, Algebra i Analiz, 22:6 (2010), 109–126; St. Petersburg Math. J., 22:6 (2011), 927–939
\Bibitem{IliLel10}
\by A.~M.~Il'in, E.~F.~Lelikova
\paper On asymptotic approximations of solutions of an equation with a~small parameter
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 109--126
\mathnet{http://mi.mathnet.ru/aa1216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760088}
\zmath{https://zbmath.org/?q=an:1235.35100}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 927--939
\crossref{https://doi.org/10.1090/S1061-0022-2011-01177-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871429983}
Linking options:
https://www.mathnet.ru/eng/aa1216
https://www.mathnet.ru/eng/aa/v22/i6/p109
This publication is cited in the following 6 articles:
A. R. Danilin, “Asymptotics of the Solution of a Bisingular Optimal Distributed Control Problem in a Convex Domain with a Small Parameter Multiplying a Highest Derivative”, Comput. Math. and Math. Phys., 64:5 (2024), 941
A. R. Danilin, “Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives”, Ufa Math. J., 15:2 (2023), 42–54
E. F. Lelikova, “On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 132–147
D. A. Tursunov, U. Z. Erkebaev, “Asimptotika resheniya bisingulyarno vozmuschennoi zadachi Dirikhle v koltse s kvadratichnym rostom na granitse”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:2 (2016), 52–61
“Arlen Mikhailovich Ilin (k vosmidesyatiletiyu so dnya rozhdeniya)”, Ufimsk. matem. zhurn., 4:2 (2012), 3–12
“Arlen Mikhailovich Il'in. On the occasion of his 80th birsday”, Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 1–4