|
This article is cited in 1 scientific paper (total in 1 paper)
Research Papers
On ill-posedness of free-boundary problems for highly compressible two-dimensional elastic bodies
Yu. V. Egorova, E. Sanchez-Palenciab a Université Paul Sabatier, Laboratoire MIP, Toulouse, France
b Université Pierre et Marie Curie, Laboratoire de Modélisation en Méchanique, Paris, France
Abstract:
Some problems of elasticity theory related to highly compressible two-dimensional elastic bodies are considered. Such problems arise in real elasticity and pertain to some materials having negative Poisson ratio. The common feature of such problems is the presence of a small parameter $\varepsilon$. If $\varepsilon>0$, the corresponding equations are elliptic and the boundary data obey the Shapiro–Lopatinsky condition. If $\varepsilon=0$, this condition is violated and the problem may fail to be solvable in distribution spaces. The rather difficult passing to the limit is studied.
Keywords:
two-dimensional elasticity, negative Poisson ratio, elliptic boundary value problems.
Received: 29.06.2010
Citation:
Yu. V. Egorov, E. Sanchez-Palencia, “On ill-posedness of free-boundary problems for highly compressible two-dimensional elastic bodies”, Algebra i Analiz, 22:6 (2010), 91–108; St. Petersburg Math. J., 22:6 (2011), 913–926
Linking options:
https://www.mathnet.ru/eng/aa1215 https://www.mathnet.ru/eng/aa/v22/i6/p91
|
Statistics & downloads: |
Abstract page: | 433 | Full-text PDF : | 139 | References: | 76 | First page: | 13 |
|