Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 6, Pages 127–184 (Mi aa1217)  

This article is cited in 16 scientific papers (total in 16 papers)

Research Papers

The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary

V. A. Kozlova, S. A. Nazarovb

a Department of Mathematics, Linkopings Universitet, Linkoping, Sweden
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity $\gamma$ that describes the depth $O(\varepsilon^\gamma)$ of irregularity ($\varepsilon$ is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.
Keywords: biharmonic operator, Dirichlet problem, asymptotic expansions of eigenvalues, eigenoscillations of the Kirchhoff plate, rapid oscillation and nonregular perturbation of the boundary.
Received: 15.06.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 6, Pages 941–983
DOI: https://doi.org/10.1090/S1061-0022-2011-01178-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Kozlov, S. A. Nazarov, “The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary”, Algebra i Analiz, 22:6 (2010), 127–184; St. Petersburg Math. J., 22:6 (2011), 941–983
Citation in format AMSBIB
\Bibitem{KozNaz10}
\by V.~A.~Kozlov, S.~A.~Nazarov
\paper The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a~domain with highly indented boundary
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 127--184
\mathnet{http://mi.mathnet.ru/aa1217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760089}
\zmath{https://zbmath.org/?q=an:1232.31001}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 941--983
\crossref{https://doi.org/10.1090/S1061-0022-2011-01178-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871457662}
Linking options:
  • https://www.mathnet.ru/eng/aa1217
  • https://www.mathnet.ru/eng/aa/v22/i6/p127
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:650
    Full-text PDF :175
    References:107
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024