Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 6, Pages 67–90 (Mi aa1214)  

This article is cited in 22 scientific papers (total in 22 papers)

Research Papers

Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data

S. Yu. Dobrokhotovab, V. E. Nazaĭkinskiĭab, B. Tirozzic

a Moscow Institute of Physics and Technology, Moscow, Russia
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
c University of Rome "La Sapienza", Rim, Italy
References:
Abstract: The Cauchy problem is considered for the two-dimensional wave equation with velocity $c=\sqrt x_1$ on the half-plane $\{x_1\geq0,\ x_2\}$, with initial data localized in a neighborhood of the point $(1,0)$. This problem serves as a model problem in the theory of beach run-up of long small-amplitude surface waves excited by a spatially localized instantaneous source. The asymptotic expansion of the solution is constructed with respect to a small parameter equal to the ratio of the source linear size to the distance from the $x_2$-axis (the shoreline). The construction involves Maslov's canonical operator modified to cover the case of localized initial conditions. The relationship of the solution with the geometrical optics ray diagram corresponding to the problem is analyzed. The behavior of the solution near the $x_2$-axis is studied. Simple solution formulas are written out for special initial data.
Keywords: wave equation with degenerating velocity, asymptotic expansion, wave front, singular Lagrangian manifold, run-up.
Received: 13.09.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 6, Pages 895–911
DOI: https://doi.org/10.1090/S1061-0022-2011-01175-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaǐkinskiǐ, B. Tirozzi, “Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data”, Algebra i Analiz, 22:6 (2010), 67–90; St. Petersburg Math. J., 22:6 (2011), 895–911
Citation in format AMSBIB
\Bibitem{DobNazTir10}
\by S.~Yu.~Dobrokhotov, V.~E.~Naza{\v\i}kinski{\v\i}, B.~Tirozzi
\paper Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 67--90
\mathnet{http://mi.mathnet.ru/aa1214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2798767}
\zmath{https://zbmath.org/?q=an:1230.35057}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 895--911
\crossref{https://doi.org/10.1090/S1061-0022-2011-01175-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871425387}
Linking options:
  • https://www.mathnet.ru/eng/aa1214
  • https://www.mathnet.ru/eng/aa/v22/i6/p67
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:863
    Full-text PDF :236
    References:86
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024