Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 6, Pages 67–90 (Mi aa1214)  

This article is cited in 23 scientific papers (total in 23 papers)

Research Papers

Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data

S. Yu. Dobrokhotovab, V. E. Nazaĭkinskiĭab, B. Tirozzic

a Moscow Institute of Physics and Technology, Moscow, Russia
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
c University of Rome "La Sapienza", Rim, Italy
References:
Abstract: The Cauchy problem is considered for the two-dimensional wave equation with velocity $c=\sqrt x_1$ on the half-plane $\{x_1\geq0,\ x_2\}$, with initial data localized in a neighborhood of the point $(1,0)$. This problem serves as a model problem in the theory of beach run-up of long small-amplitude surface waves excited by a spatially localized instantaneous source. The asymptotic expansion of the solution is constructed with respect to a small parameter equal to the ratio of the source linear size to the distance from the $x_2$-axis (the shoreline). The construction involves Maslov's canonical operator modified to cover the case of localized initial conditions. The relationship of the solution with the geometrical optics ray diagram corresponding to the problem is analyzed. The behavior of the solution near the $x_2$-axis is studied. Simple solution formulas are written out for special initial data.
Keywords: wave equation with degenerating velocity, asymptotic expansion, wave front, singular Lagrangian manifold, run-up.
Received: 13.09.2010
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 6, Pages 895–911
DOI: https://doi.org/10.1090/S1061-0022-2011-01175-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaǐkinskiǐ, B. Tirozzi, “Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data”, Algebra i Analiz, 22:6 (2010), 67–90; St. Petersburg Math. J., 22:6 (2011), 895–911
Citation in format AMSBIB
\Bibitem{DobNazTir10}
\by S.~Yu.~Dobrokhotov, V.~E.~Naza{\v\i}kinski{\v\i}, B.~Tirozzi
\paper Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 6
\pages 67--90
\mathnet{http://mi.mathnet.ru/aa1214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2798767}
\zmath{https://zbmath.org/?q=an:1230.35057}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 6
\pages 895--911
\crossref{https://doi.org/10.1090/S1061-0022-2011-01175-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297091500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871425387}
Linking options:
  • https://www.mathnet.ru/eng/aa1214
  • https://www.mathnet.ru/eng/aa/v22/i6/p67
  • This publication is cited in the following 23 articles:
    1. V.E. Nazaikinskii, “On the Phase Spaces for a Class of Boundary-Degenerate Equations”, Russ. J. Math. Phys., 31:4 (2024), 713  crossref
    2. V. E. Nazaikinskii, “On an elliptic operator degenerating on the boundary”, Funct. Anal. Appl., 56:4 (2022), 324–326  mathnet  crossref  crossref  mathscinet
    3. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Kuznetsov S.V., “Abnormal Dispersion of Fundamental Lamb Modes in Fg Plates: II-Symmetric Versus Asymmetric Variation”, Z. Angew. Math. Phys., 72:2 (2021), 73  crossref  mathscinet  isi
    5. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$”, Proc. Steklov Inst. Math., 306 (2019), 74–89  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Simple Asymptotics for a Generalized Wave Equation with Degenerating Velocity and Their Applications in the Linear Long Wave Run-Up Problem”, Math. Notes, 104:4 (2018), 471–488  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Anatoly Anikin, Sergey Dobrokhotov, Vladimir Nazaikinskii, “Asymptotic solutions of the wave equation with degenerate velocity and with right-hand side localized in space and time”, Zhurn. matem. fiz., anal., geom., 14:4 (2018), 393–405  mathnet  crossref
    8. Dobrokhotov S.Yu., Nazaikinskii V.E., “Asymptotic Localized Solutions of the Shallow Water Equations Over a Nonuniform Bottom”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 040026  crossref  isi
    9. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform Asymptotics of the Boundary Values of the Solution in a Linear Problem on the Run-Up of Waves on a Shallow Beach”, Math. Notes, 101:5 (2017), 802–814  mathnet  crossref  crossref  mathscinet  isi  elib
    10. An. G. Marchuk, “The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach”, Num. Anal. Appl., 10:1 (2017), 17–27  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Lozhnikov D.A., Nazaikinskii V.E., “Method For the Analysis of Long Water Waves Taking Into Account Reflection From a Gently Sloping Beach”, Pmm-J. Appl. Math. Mech., 81:1 (2017), 21–28  crossref  mathscinet  isi  scopus
    12. Minenkov D.S., “Asymptotics Near the Shore For 2D Shallow Water Over Sloping Planar Bottom”, Proceedings of the International Conference Days on Diffraction (Dd) 2017, eds. Motygin O., Kiselev A., Goray L., Suslina T., Kazakov A., Kirpichnikova A., IEEE, 2017, 240–243  crossref  isi
    13. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Characteristics with Singularities and the Boundary Values of the Asymptotic Solution of the Cauchy Problem for a Degenerate Wave Equation”, Math. Notes, 100:5 (2016), 695–713  mathnet  crossref  crossref  mathscinet  isi  elib
    14. V. E. Nazaikinskii, “On the Representation of Localized Functions in $\mathbb R^2$ by Maslov's Canonical Operator”, Math. Notes, 96:1 (2014), 99–109  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. V. E. Nazaikinskii, “The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a Wave Equation Degenerating on the Boundary”, Math. Notes, 96:2 (2014), 248–260  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. V. P. Maslov, “Two-fluid picture of supercritical phenomena”, Theoret. and Math. Phys., 180:3 (2014), 1096–1129  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. Maslov V.P., “New Construction of Classical Thermodynamics and Ud-Statistics”, Russ. J. Math. Phys., 21:2 (2014), 256–284  crossref  mathscinet  zmath  isi  elib  scopus
    18. Nazaikinskii V.E., “Maslov's Canonical Operator For Degenerate Hyperbolic Equations”, Russ. J. Math. Phys., 21:2 (2014), 289–290  crossref  mathscinet  zmath  isi  elib  scopus
    19. Sipailo P.A., “On the Numerical Simulation of the Propagation of the Wave Front of a Tsunami Wave in a Pool of Variable Depth with Run-Up on the Beach”, Russ. J. Math. Phys., 20:3 (2013), 383–386  crossref  mathscinet  zmath  isi  elib  scopus
    20. Dobrokhotov S.Yu., Nazaikinskii V.E., Tirozzi B., “Two-Dimensional Wave Equation with Degeneration on the Curvilinear Boundary of the Domain and Asymptotic Solutions with Localized Initial Data”, Russ. J. Math. Phys., 20:4 (2013), 389–401  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:921
    Full-text PDF :260
    References:105
    First page:25
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025