Abstract:
The one-sided Littlewood–Paley inequality for pairwise disjoint rectangles in R2 is proved for the Lp-metric, 0<p⩽2. This result can be treated as an extension of Kislyakov and Parilov's result (they considered the one-dimensional situation) or as an extension of Journé's result (he considered disjoint parallelepipeds in Rn but his approach is only suitable for p∈(1,2]). We combine Kislyakov and Parilov's methods with methods “dual” to Journé's arguments.
Citation:
N. N. Osipov, “Littlewood–Paley inequality for arbitrary rectangles in R2 for 0<p⩽2”, Algebra i Analiz, 22:2 (2010), 164–184; St. Petersburg Math. J., 22:2 (2011), 293–306
\Bibitem{Osi10}
\by N.~N.~Osipov
\paper Littlewood--Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0<p\le2$
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 164--184
\mathnet{http://mi.mathnet.ru/aa1180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668127}
\zmath{https://zbmath.org/?q=an:1219.42011}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 293--306
\crossref{https://doi.org/10.1090/S1061-0022-2011-01141-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288688900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871372089}
Linking options:
https://www.mathnet.ru/eng/aa1180
https://www.mathnet.ru/eng/aa/v22/i2/p164
This publication is cited in the following 6 articles:
Viacheslav Borovitskiy, “Littlewood–Paley–Rubio de Francia inequality for multi‐parameter Vilenkin systems”, Mathematische Nachrichten, 297:3 (2024), 1092
V. Borovitskiy, “Littlewood–Paley–Rubio De Francia Inequality for the Two-Parameter Walsh System”, J Math Sci, 261:6 (2022), 746
V. Borovitskii, “Neravenstvo Litlvuda–Peli–Rubio de Fransia dlya dvuparametricheskoi sistemy Uolsha”, Issledovaniya po lineinym operatoram i teorii funktsii. 48, Zap. nauchn. sem. POMI, 491, POMI, SPb., 2020, 27–42
V. A. Borovitskiǐ, “Weighted Littlewood–Paley inequality for arbitrary rectangles in $\mathbb{R}^2$”, St. Petersburg Math. J., 32:6 (2021), 975–997
N. N. Osipov, “The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces”, Sb. Math., 205:7 (2014), 1004–1023
N. N. Osipov, “One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0<p\le2$”, J. Math. Sci. (N. Y.), 172:2 (2011), 229–242