Abstract:
We prove the estimate ℓ-asdimπ1(M)≤7ℓ-asdimπ1(M)≤7 for the linearly controlled asymptotic dimension of the fundamental group of any 3-dimensional graph-manifold MM. As applications, we show that the universal cover ˜M˜M of MM is an absolute Lipschitz retract and admits a quasisymmetric embedding into the product of 8 metric trees.
Citation:
A. Smirnov, “Linearly controlled asymptotic dimension of the fundamental group of a graph-manifold”, Algebra i Analiz, 22:2 (2010), 185–203; St. Petersburg Math. J., 22:2 (2011), 307–319
\Bibitem{Smi10}
\by A.~Smirnov
\paper Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 185--203
\mathnet{http://mi.mathnet.ru/aa1181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668128}
\zmath{https://zbmath.org/?q=an:1227.57025}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 307--319
\crossref{https://doi.org/10.1090/S1061-0022-2011-01142-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288688900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871384695}
Linking options:
https://www.mathnet.ru/eng/aa1181
https://www.mathnet.ru/eng/aa/v22/i2/p185
This publication is cited in the following 3 articles:
Behrstock J., Hagen M.F., Sisto A., “Asymptotic Dimension and Small-Cancellation For Hierarchically Hyperbolic Spaces and Groups”, Proc. London Math. Soc., 114:5 (2017), 890–926
Hume D., “Direct Embeddings of Relatively Hyperbolic Groups With Optimal l(P) Compression Exponent”, J. Reine Angew. Math., 703 (2015), 147–172
Hume D., Sisto A., “Embedding Universal Covers of Graph Manifolds in Products of Trees”, Proc. Amer. Math. Soc., 141:10 (2013), 3337–3340